

© 2000 - 2004 JetBrains, Inc. All rights reserved.

JetBrains, IntelliJ, IntelliJ IDEA, and IntelliJ Labs are either registered trademarks or trademarks of
JetBrains s.r.o. in the Czech Republic and in other countries. The names of actual companies and products
mentioned herein may be the trademarks of their respective owners.

Information in this document is subject to change without notice. JetBrains, Inc. makes no warranties,
neither expressed nor implied, in this document. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or
by any means (electronic, mechanical, photocopying, recording or otherwise), or for any purpose, without
the express written consent of JetBrains, Inc.

Contact

International Sales

JetBrains s.r.o.
Klanova 9/506
14700 Prague
Czech Republic

Phone: +420 2 4172 2501
Fax: +420 2 6171 1724
sales@jetbrains.com

Evaluation support:
support@jetbrains.com

North American Sales

East coast

33-C South Main Street
Medford NJ 08055

Phone: +1 (609) 714 7883
Fax: +1 (609) 714 7886
sales.us@jetbrains.com

West coast

1670 So. Amphlett Blvd. -
Suite 214
San Mateo, CA 94402

Phone: +1 (650) 378 8571
Fax: +1 (650) 378 8591
sales.us@jetbrains.com

Canada

207 Barnes Street
Kempville ON K0G 1J0

Phone: +1 (613) 258 0575
Fax: +1 (613) 258 5979
sales.us@jetbrains.com

On the Web

Corporate Website: www.jetbrains.com
IntelliJ IDEA Website: www.jetbrains.com/idea
IntelliJ Community: www.intellij.org
IntelliJ Technology Network: www.intellij.net

 1

mailto:sales@jetbrains.com
mailto:support@jetbrains.com
mailto:sales.us@jetbrains.com
mailto:sales.us@jetbrains.com
mailto:sales.us@jetbrains.com
http://www.jetbrains.com/
http://www.jetbrains.com/idea/
http://www.intellij.org/
http://www.intellij.net/

Acknowledgements

Special thanks to all of the community members who offered suggestions and constructive feedback for
this Overview, and who spent countless hours of their valuable time bug hunting and giving critical
feedback to help make IDEA what it is today, this includes but is not limited to: Alain Ravet, Glen
Stampoultzis, Guillaume Laforge, Jacques Morel, Jonas Kvarnström, Oleg Danilov, Robert F. Beeger,
Robert S. Sfeir, Thomas Singer, and the Team JetBrains members not mentioned specifically herein.

About IntelliJ IDEA

IntelliJ IDEA is the industry’s smartest and most user friendly Java IDE in the market place today. No
other IDE enhances developer productivity like IDEA, a fully loaded IDE with industry setting refactoring
tools, intelligent code editing assistance, a diverse array of J2EE development features and integrations for
rapid web-application development, a powerful Code-Inspection tool, advanced CVS support, an Open
API for third-party plug-in support, GUI designer, support for JSR-14 (Generics), and a host of other
features to secure this boast. If that wasn’t enough, IntelliJ IDEA is the industry’s only IDE that was built
from the ground up to enhance productivity and provides an ergonomic development environment to suit
individual tastes and coding styles.

Why Read This Overview?

IntelliJ IDEA 4.0 Overview was written for developers, project managers, architects, and even sales staff –
those who have used prior version of IDEA or those who are new to the IDEA experience. While there is
no better way to learn IDEA than by downloading it and actively trying it, this overview is targeted at
individuals who wish to accelerate their learning curve through written print before sitting down in front
of a computer and starting IDEA.

This overview assumes you have a rudimentary understanding of Java fundamentals and Object-orientated
programming; it is not necessary for you to have an expert, zealot like understanding of all Java based or
centered technologies. IDEA is a very user friendly tool and will quickly prove to be an excellent
companion for you, whether you are an advanced Java developer or a new student of Java. This overview
hopes to be as friendly.

We hope that this overview will be of assistance to you as you begin your journey on IDEA 4.0, and we
are confident in saying that once you have given IDEA a fair hearing, it is unlikely you will want to
replace it with anything else.

IntelliJ IDEA: The Intelligent, Usable Java Editor

Ever since IntelliJ IDEA made its debut into the Java IDE industry in 2001, the expectations for IDE
performance have been forced up a notch. What then became the world’s smartest and most usable Java
IDE on the planet has continued to lead and push the envelope in terms of usability, refactoring, and code
automation features that have remained unparalleled in the market by its imitators.

IDEA’s mana has always been summed up in two words: Intelligence and Usability. IDEA has never
promised to be the “everything editor” – it has always promised to be first and foremost a complete Java
editor with the ability to understand the code in its editor as good as those who wrote it.

 2

Every aspect of IDEA’s construction, its features, functions, UI layout, and integrations were all
specifically designed to maximize developer ergonomics. As noted earlier, this ergonomic aspect is what
has made, and continues to make, IDEA the industry’s most intelligent and user friendly IDE available.

The following sections of this overview will cover the main features available in IDEA, giving you an
extensive taste of why IDEA has become the de facto pioneer in IDE innovation, and why we continue to
unabashedly maintain our motto: “Develop with Pleasure!”

New Features in IntelliJ IDEA 4.0

GUI Designer

IDEA now comes powered with a new GUI Designer to let you rapidly create any type of interface for all
of your development needs. Its component layout paradigm and intuitive user interface enable you to
quickly and easily deal with dialogs and panels regardless of complexity. As shown in figure GUI 1.1,
IDEA provides an easy to utilize point-and-click grid layout pane for GUI construction.

 GUI 1.1

Moreover, IDEA completely separates you from working with the interface code itself. You can safely
skip the details with developing layouts, Swing, etc. All interface coding is simplified to linking your
class members with corresponding interface elements as shown in figure GUI 1.2.

 GUI 1.2

 3

As shown in figure GUI 1.3, even IDEA’s traditional code completion and intention action features
work within the GUI designer tool.

 GUI 1.3

As shown in figure GUI 1.4, Swing components are added to your grid from a simple to utilize Swing
component tool bar. IDEA also allows you to add additional components and component libraries (from
IDE Settings) to the existing palette to extend its power even more.

 GUI 1.4

You can learn how to use IDEA’s GUI Designer tool quickly by watching instructional videos on how to
build, wire together, and deploy a form from this powerful tool, available here:
http://www.jetbrains.com/idea/training/ui_designer.html

Generics Support

Although at the time of this writing, no Sun finalized or stable implementation of Generics (JSR-14)
exists, developers can still make use of Sun’s beta implementation of Generics currently available in the
beta version of JDK 1.5. To start using Generics, just utilize JDK 1.5 for the module/project with generics
code, and then under Settings | Compiler, uncheck the Use generics-enabled compiler option and add –
source 1.5 to the Additional Javac command line parameters field as shown in figure Generics 1.1.

 4

http://www.jetbrains.com/idea/training/ui_designer.html
http://www.jcp.org/aboutJava/communityprocess/review/jsr014/

 Generics 1.1

Nota Bene: IDEA version 4.1, which will be a free upgrade to all who purchase IDEA 4.0, will seamlessly integrate Generics once the implementation has
been completed. The above mention settings will no longer be needed at that time.

Once IDEA has been setup to use Generics, these new Generics libraries will be indexed by IDEA’s code
completion tool. Once implemented into source, Generic code fragments will now be easily handled as
shown in figure Generics 1.2.

 Generics 1.2

Modular Project Creation

IntelliJ IDEA’s new modular project structure provides greater flexibility for configuring, setting up, and
organizing your projects. In particular, it improves the management of complex projects with multiple
internal dependencies and is especially useful for J2EE centered projects, where multiple projects have a
tendency to share a lot of common code (connection handlers for example). Using modules not only eases
project and code management by helping you divide and organize your projects with logically associated
components, but also lets you share actual code, removing the need to make copies of the same package
and classes because modules can be reused among separate projects.

Since a module exists as a separate logical part of a project, incorporating working sources, libraries,
reference to a target JDK and more, it can thus be compiled, ran or debugged as a standalone entity.
IDEA separates modules into the following specific module types: Java modules, EJB modules, Web
modules and J2EE Application modules.

 5

 Modules 1.1

As shown in figure Modules 1.1, the modules Path pane allows you to assign module dependencies and
organize (or re-organize) existing modules within an easy to use administration panel.

BEA WebLogic Integration

Those who depend on BEA’s WebLogic Application Server to run their enterprise applications will be
happy to know that IDEA now includes integration support with this industry leading application server.
In projects created to work with WebLogic, IDEA fully supports and makes it easy to implement
WebLogic-specific tags and deployment descriptors, and more. In addition, you can work with several
different WebLogic servers at the same time. To do so, you simply setup a new WebLogic instance in
IDEA WebLogic integration control panel as shown in figure WebLogic 1.1. This easy and rather
intuitive configuration pane makes deploying WebLogic applications a snap. In IDEA’s additional
WebLogic tool window, the Deployment View, the process of deploying a WebLogic application is as
simple as pressing the single Deploy button. IDEA takes care of all corresponding details once this has
been done.

 6

 WebLogic 1.1

HotSwap Debugger

One of the more widely used and critical features needed in any IDE is a fast working and effective
debugger. This is why IDEA has integrated a JPDA-based debugger that is not only extremely fast and
simple to utilize, but also now includes the ability to perform HotSwap Debugging. A HotSwap enabled
debugger allows you make changes to your code while the application is still running, removing the need
to stop and start the application repeatedly to correct coding errors. Simply invoke the reload function to
reload the changed object, and continue the debugging process.

Note Bene: HotSwapping allows you to edit existing methods, fields, and constructors. However, it does not allow you to add new methods, fields, or
constructors; you also cannot change field types, method signatures, nor can you delete methods, fields, or constructors in the given class. Doing so will lead to
hotswap errors being thrown. You can read a more in-depth overview of how hotswap debugging works from:

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jdi/com/sun/jdi/VirtualMachine.html#redefineClasses(java.util.Map)

As shown in figure Debugging 1.1, IDEA’s powerful debugger incorporates a very friendly and intuitive
user interface that allows you to quickly hunt down and correct code errors should they happen to arise.

 7

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jdi/com/sun/jdi/VirtualMachine.html

 Debugging 1.1

You can select an entire class file, block of code, or just single lines of code to observe during the
debugging process, and you can access the debugger’s output in an easy to read tree-view pane as shown
in figure Debugging 1.2.

 Debugging 1.2

Split Editor

If you are the kind of developer who likes to work with multiple source files at one time (or just like to
compare files side by side), you can now open two IDEA editors simultaneously for maximum viewing
pleasure. To do so, simply select a source file’s tab as shown in figure Split 1.1.

 Split 1.1

 8

Right-click on the selected tab and then choose either New Horizontal Tab Group or New Vertical Tab
Group as shown in figure Split 1.2, and a new editor pane will be opened with the selected tab file
according to the New Horizontal/Vertical Tab Group selection as shown in figure Split 1.3.

 Split 1.2

 Split 1.3

Alternatively, if New Vertical Tab Group is selected, the new editor is opened column wise as shown in
figure Split 1.4.

 Split 1.4

 9

Code Completions

There has always been a dichotomy between code quality and coding quickly. Tradition has it that one is
normally sacrificed to obtain the other and that it is almost an impossible task to bring the two together
into a harmonious synthesis. Well, that was exactly what was happening until IntelliJ IDEA walked on
the scene.

IDEA comes equipped with three robust types of code completion features to help you accurately speed
up your coding responsibilities: Basic, Smart-Type, and Class Name completions.

Basic (Ctrl + Space)

IDEA’s Basic code completion feature not only completes basic Java syntax for you, but will also
dynamically create a selection list of usable code completions based upon what has been written in the
editor. As shown in figures Code Completions 1.1, 1.2, and 1.3, as new objects are added to your source,
IDEA memorizes and then allows you to recall complete variables by selecting Ctrl + Space on the
keyboard.

 Code Completions 1.1

 Code Completions 1.2

 Code Completions 1.3

As shown in figure Code Completions 1.4, the Basic code completion feature will also allow you to
quickly access and insert any Java class, method, and variable from any package that has been imported or
has been previously used.

 Code Completions 1.4
 addActionListener method implementation from javax.swing.* package

 10

Smart-Type (Ctrl + Shift + Space)

IDEA’s Smart-Type code completion functionality helps users select the correct data types to implement
in relevant locations depending on what has already been coded. For example, as shown in figure Code
Completions 1.5, when the Smart-Type completion feature is invoked, a popup with appropriate selections
appears ready to implement the selected item.

 Code Completions 1.5

Once the desired item from the popup has been selected, IDEA will automatically implement it with all of
its corresponding components as shown in figure Code Completions 1.6.

 Code Completions 1.6

Class Name (Ctrl + Alt + Space)

IDEA‘s Class Name completion feature as shown in figures Code Completions 1.6 and 1.7 makes it easy
to automatically suggest and implement the name of any class (and its corresponding import, if needed)
anywhere in any project or library. (Basic code completion, on the other hand, utilizes only imported
packages or those being resolvable in the current scope).

 Code Completions 1.6
 List of selectable classes in popup after Class Name code completion function has been invoked

 Code Completion 1.7
 JPanel is implemented along with its required import package javax.swing.*

 11

Import Assistant

One basic but very important feature that really enhances productivity is IDEA’s Import Assistant. Just
start typing the Java class short name into the editor and the import assistant will automatically launch a
popup suggesting that you import its relevant corresponding Java class as shown in figure Import Assistant
1.1.

 Import Assistant 1.1

Not only will IDEA make the suggestion, but it will enable you to actually import the suggested Java class
with one stroke of the keyboard. In figure Import Assistant 1.1, you will notice that IDEA has identified
the Java class short name lacking an import statement and has offered to import the corresponding class by
pressing Alt + Enter.

 Import Assistant 1.2

In figure Import Assistant 1.2, after selecting Alt + Enter on the keyboard, the statement is imported, the
popup disappears, and the red text on JPanel (error highlighting feature) vanishes. All of this is done
without your caret position moving!

The import assistant also works when importing large blocks of code. For example, if you copy a block of
code from one project file, and you paste this block of code into another project file, the import assistant
will automatically prompt you for permission to import the relevant Java classes that are lacking in the
target class/interface. In figures Import Assistant 1.3, 1.4, 1.5, you can see the copy and paste process in
action.

 Import Assistant 1.3
 Copying from one project

 12

 Import Assistant 1.4
 Pasting into new project and being prompted to import new class

 Import Assistant 1.5
 Missing class has been imported

Although for illustrative purposes we have used a very simple code example, IDEA does not have a
problem handling large code selections and importing any requisite classes. When IDEA prompts you
with the class import dialog, as shown in figure Import Assistant 1.4, you can select any class to import (or
not to import), and should you miss anything once you have made your selection, IDEA will again prompt
you asking if you wish to make any additional imports for any missing item.

Live Templates

IDEA is the ideal IDE for rapid development. It incorporates an advanced Live Templates technology
that enables developers to input lines of code constructs by short name that inputs evaluated expressions
and type casts all with single key strokes. Coding has never been faster or easier! As shown in figure
Live Templates 1.1, you only need to type the short name to invoke the live template.

 Live Templates 1.1
 Short name template “itco” (Iterate elements) being implemented

The entire live template index can be accessed by selecting Code | Insert Live Template from the main
menu or by pressing Ctrl + J on the keyboard as shown in figure Live Templates 1.2. You will notice that
if you begin typing, the menu will adjust according to the first known characters you input, allowing you
to narrow down your selections quickly.

 13

 Live Templates 1.2
 Ctrl + J brings up the live template index

When an item from the index is selected, the corresponding template is implemented as shown in Live
Templates 1.3

 Live Templates 1.3

Depending on your project’s requirements, you can edit the existing templates or add more templates to
the index by creating your own. To call up the Live Templates editor, select File | Settings and then
select the Live Templates icon on main settings pane. Once you have brought up the Live Template list,
you can select the Live Template you wish to edit or add a new one. The process is pretty straightforward
as shown in figure Live Templates 1.4.

 Live Templates 1.4
 Live Templates editing / adding panel

Searching for Usages

Working in large projects can sometimes overwhelm your ability to keep track of every class, method,
field, or variable in a project. To leverage this work, IDEA’s Usage Search function helps users quickly
determine the functionality of any selected class, method, field, or variable in a project. Users simply
click on the item they want to search, and IDEA will show all usages of that item in an entire project in an
easy to read and navigate usages result tree.

As shown in figure Searching for Usages 1.1, any item in a project can be searched in order to find out
where that item is being used.

 14

 Searching for Usages 1.1
 The project field “numberofplanesperhour” is being searched.

As noted above, all results are viewable in an easy to navigate tree panel as shown in figure Searching for
Usages 1.2.

 Searching for Usages 1.2
 Navigational tree with results

When a searched result is selected in the navigational tree, the caret is transported to the actual item
location in the source code with a simple double-click, as shown in figure Searching for Usages 1.3.

 Searching for Usages 1.3
 Navigational tree item location returned to source code

 15

In addition to this general usage search, IDEA also allows users to search for specific element types by
employing a rich set of search options and filters. This usage search feature will not only search code
within the immediate editor window, but you can also enable it to search entire packages and projects.

Code Layout Manager

If you have ever been involved in a project with multiple developers and found yourself reading the code
of somebody else, you know that it can appear at times as a foreign language you have yet to learn. If this
is the case, or you are the guilty one who writes illegible code for your colleagues, you no longer have to
fear. IDEA’s Code Layout Manager tool is perfect for creating, optimizing, controlling, and directing a
uniform approach to code development layout.

 Code Layout Manager 1.1
 Select the block of code you want to format

Utilizing this powerful feature is initiated with the touch of a key. As shown in figure Code Layout
Manager 1.1, you only have to highlight a block of code you wish to format and then select Ctrl + Alt +
L (or from the menu Tools | Reformat Code). Depending on your layout preference, the code is
automatically reorganized as shown in figure Code Layout Manager 1.2.

 Code Layout Manager 1.2
 Code after IDEA’s Reformat Code option has been used

 16

In addition to highlighting individual blocks of code, the code layout feature also allows you to format
entire classes or even entire projects all at the stroke of a key. If you are a project manager, you can even
export your particular style scheme preference to everyone in your team via email.

Optimize Imports

An additional tool for tidying up code in IDEA is the Optimize Imports feature. The optimize imports
function searches for and removes redundant and unused imports that have a tendency to turn readable
code into an eyesore.

As shown in figure Optimize Imports 1.1, there are three grayed-out imports that are not currently being
used by the open class (they may have been used, but are no longer needed). Simply select the Optimize
Imports function (menu Tools | Optimize Imports or Ctrl + Alt + O) and these imports will be safely
removed as shown in figure Optimize Imports 1.2.

 Optimize Imports 1.1
 Three grayed out imports to be removed

 Optimize Imports 1.2
 Three grayed out imports have been removed

Intention Actions

Sometimes our greatest ideas suddenly hit us in the head like a ton of bricks, and when we find ourselves
in such creative interludes, we do not want to be bothered with little things. When it comes to coding,
IDEA’s ability to create classes, methods, fields, and local variables from unknown usages is the work
horse you need for taking care of the little things, so you do not have to be bothered when re-structuring,
re-designing, or just adding new goodies into your source code.

Enter the Light Bulb: The crafty little icon that magically appears throughout the development process
to give you a helping hand.

 17

For example, as shown in figure Intention Actions 1.1, IDEA allows you to first implement an unknown
usage, and then after the usage has been implemented, the light bulb studiously alerts you to the code’s
missing constructs.

 Intention Actions 1.1
 Unknown usage import correction dialog

As the unknown usage popup appears, IDEA offers a variety of import options depending on current code
construction. After one of the various selections has been chosen (in this example, to create a new
method), IDEA intelligently creates and then places the selection into an appropriate position within the
source code editor as shown in figure Intention Actions 1.2.

 Intention Actions 1.2
 Selected item imported into source code

After the selection has been imported, you can then continue to edit this newly imported selection or you
can return back to your previous place in the source code editor by selecting Ctrl + Shift + Backspace
and continue working.

Not only will IDEA create methods for you, it will also implement methods into your code found in
existing packages where these methods have previously been implemented. As shown in figure Intention
Actions 1.3, a known Java identifier has been entered into the editor, and IDEA will suggest that you
implement this keyword’s corresponding items (in this case, the MouseListener methods).

 Intention Actions 1.3

 18

After the selection has been chosen, in this case the Implement Methods selection for MouseListener,
IDEA will prompt the user as shown in figure Intention Actions 1.4 to select the methods from the
MouseListener package they would like to implement. IDEA allows you to implement all of the methods
from the package, or just individual methods by highlighting individual selections and then selecting the
OK button.

 Intention Actions 1.4

After the methods in the package have been chosen, and the OK button selected, IDEA will automatically
import and implement the methods into your class as shown in figure Intention Actions 1.5.

 Intention Actions 1.5

Opening Class by its Short Name

When you are working with large projects that contain a large number of classes, finding a specific class
can waste a lot of valuable of time. To ensure that you spend your valuable time actually coding, IDEA
lets you open any class by its short name, eliminating the need to perform time consuming searches for a
particular class.

Simply select Ctrl + N, and once you start to enter the first letter of the desired class, IDEA will
dynamically begin to limit your possible selections as shown in figure OCSN 1.1. Once your choice has
been selected, the desired class will be viewable in the source code editor panel.

 19

 OCSN 1.1
 Class search by short name

Keymapping

This IDEA feature allows you to ergonomically adjust how the IDE’s functions are invoked. As you can
see in figure Keymapping 1.1, shortcuts to most IDEA functions appear on the right side of menu items
located under main menu categories.

 Keymapping 1.1

IDEA comes with a default set of shortcuts ready to use immediately after software installation. However,
this default setup can be replaced with your own customized mapped selections. As shown in figure
Keymapping 1.2, you can access the keymap index and change the default keymap selections and replace
them with your own customized versions. You may also create additional keymap profiles, in case you
prefer to have more than one set or more than one person uses the same computer. You can also save
mapped configuration settings and export them to other machines running IDEA.

 20

 Keymapping 1.2

Navigation

As with any project, knowing what your project’s internal components consist of is important. More
importantly however, is how fast you can find them to make changes or add improvements. Not only does
IDEA allow you to quickly open a class by its short name, but you can navigate to any file in a project by
its short name as shown in figure Navigation 1.1, allowing you to quickly find declarations and type
declarations, implementations, and super methods quickly.

 Navigation 1.1

In addition, IDEA allows you to quickly jump to the last change made in a file (Ctrl + Shift +
Backspace) and even view the list of previously viewed files as shown in figure Navigation 1.2.

 Navigation 1.2

 21

Another feature to help keep you organized and manage your code efficiently is the Bookmark and ToDo
functions. The Bookmark function allows you to mark lines of code in your project, and then allows you
to quickly navigate back to those locations. The ToDo function allows you to see your ToDo comments
in your source code in an easy to read tree-view panel as shown in figure Navigation 1.3. You can then
navigate to the actual places in the source code by clicking on the specific Todo in the tree-panel.

 Navigation 1.3

Lastly, IDEA also enables you to quickly browse class, interface, and method hierarchies and then
transport you to these locations in the source code as shown in figure Navigation 1.4.

 Navigation 1.4

Code Inspection

Those who pride themselves on producing meticulously clean code are always surprised at what IDEA’s
code inspection feature is able to find. This feature empowers you with the ability to analyze your source
code for irregularities and informs you when your code’s design logic is “fuzzy.” It highlights and
navigates you to unassociated, unused, and redundant classes, interfaces, methods, and fields.

In addition to this design verification function, the Code Inspection feature is equipped with a powerful
code implementation validation tool that reports where run-time exceptions might arise based upon certain
conditions, varying from whether or not certain expressions have their execution results used or if
execution flow never reaches certain statements.

To get a taste of how powerful and useful the code inspection feature is, take notice of the source code in
figure Code Inspection 1.1. On line 27 we have commented out and noted a deliberate error we have
thrown in the source code.

 22

 Code Inspection 1.1
 Example source code with conditional error

Now, we invoke the Code Inspection control panel and select our desired analyze and search criteria as
shown in figure Code Inspection 1.2, and then run the Code Inspection tool.

 Code Inspection 1.2
 Code Inspection Analyze and Search criteria option panel

If a user were to compile the error-riddled source code just previously mentioned, a compiler would not
throw an exception because the error it is not a Java error. You could deploy this application at this point
and it would work, but not the way it was intended. A quality assurance team might not find this error
immediately, and once they did find it, they would send it back to development and the developer would
have to spend more time debugging the application, eventually fixing it after a lot of wasted (and costly)
time.

This simple source code example could be easily debugged manually without much fanfare; however, in a
project with hundreds or even thousands of classes, interfaces, methods, and fields, it would be almost
unimaginable to search for these errors manually. You just simply invoke the code inspection tool and let
IDEA do this job for you.

 23

 Code Inspection 1.3
 Code Inspection Output Control Pane for Constant Conditions and NPE analysis

Once the code inspection function has completed its various selected analyses and verifications, the code
inspection’s results will be viewable in an easy to read tree-like navigation window in an output control
panel as shown above in figure Code Inspection 1.3. As noted previously, the Code Inspection function
will not only perform the above mentioned inspection as noted in the example, but a multitude of various
analyses that will dramatically reduce your chances of introducing errors into your projects. Not to
mention that it will help you streamline your source code by ridding it of left-over development chaff.

Refactoring

What is Refactoring?

One of the newer staples to take hold in the world of development and push the paradigm of conventional
programming has been the process of refactoring. What is refactoring? One industry refactoring maven,
Martin Fowler, describes refactoring as:

“The process of changing a software system in such a way that it does not alter the external
behavior of the code, yet improves its internal structure. It’s a disciplined way to clean up code
that minimizes the chances of introducing bugs.” 1

This of course is the technical definition of a process in theory; however in practice this art form can be
extremely time consuming and difficult to perform when attempted manually. In addition, if one is
actually crazy enough to try complicated refactorings manually, they inherit the risk of crippling working
systems and turning them into unstable and non-functional gobs of code. This is why IDEA comes fully
equipped with the most powerful refactoring tools available in the market. Refactoring processes such as
Renaming, Extract Method, Change Method Signature, Make Method Static, Extract Interface, Introduce
Constant, Move, and many more are bundled with IDEA for more than 25 different refactoring tools in
total.

This section of the overview will briefly introduce some of the 25 plus refactoring tools provided with
IDEA, with the intention of giving you a better understanding of when and why they are used and to see
how IDEA makes invoking them as easy as pressing a key.

Renaming

One of the more common yet most used and useful refactoring tools integrated into IDEA is the
Renaming refactoring. Renaming allows you to safely change the name of any package, class, method,
field or variable in a specific file or desired project.

1 Martin Fowler, Refactoring: Improving the Design of Existing Code, ISBN # 0201485672 (Addison-Wesley).

 24

What would be the reason for doing this? Simple: to clean your code up. When naming methods, for
example, a good programmer will reveal the purpose of that method by its name. As is shown in figure
Renaming 1.1, the name refers to a general function.

 Renaming 1.1

In figure Renaming 1.2, the method has been renamed to a label more fitting to its specific function.

 Renaming 1.2

During the renaming process, this tool automatically finds and corrects all references to a specific element
(in both the working class and the rest of the entire project). As figure Renaming 1.3 shows, an easy to
read prompt will ask you to verify your changes – either by each individual instance or entire project.

 Renaming 1.3

Once you have determined the appropriate items to refactor, and you have refactored them by selecting the
Do Refactor button, the new results from the refactoring process are shown back in the editor as shown in
figure Renaming 1.4.

 25

 Renaming 1.4

Move

Along with the Rename refactoring, IDEA’s Move refactoring tool is another straight forward yet highly
powerful and widely used refactoring process that allows you to correct, improve, or transfer misplaced
responsibilities in source code without a lot of hassle. It also enables you to quickly move methods or
static fields from one class into another, and in addition, you can also move entire classes or even entire
packages into other packages all by invoking IDEA’s Move function. This automated process eliminates
any chance of introducing bugs into your code when moving items from place to place.

For example in figure Move 1.1, the Java class file (AddressBook) shown in the project view can be easily
moved into a new location (or a previously existing one) as shown in the To package: field. All
references to this class within the entire project will be changed to accommodate such change.

 Move 1.1

Once the move process has been completed, you will see the previously mentioned Java class file has now
been moved from the addressbook package into a new package called newaddressbook as shown in figure
Move 1.2.

 26

 Move 1.2

As noted previously, in addition to moving classes between packages, you can move members of a class
into a new class. As shown in figure Move 1.3, simply point the caret to the member you wish to move
from the class AddressBook, in this case saveToMem() on line 255, and invoke the Move refactoring (you
can right-click your mouse and select Refactor | Move or press F6 on the keyboard).

 Move 1.3

Once the refactoring has been started, you will be shown a control dialog informing you of your selection,
and more importantly, a list of other members that should be moved along with your initial member as
shown in figure Move 1.4.

 Move 1.4

 27

After the appropriate desired member selections have been made, and the Move refactoring has been
completed (including your verification of the members to be moved), a new class will then be made in the
newly mentioned location with your previously selected members to be moved as shown in figure Move
1.5.

 Move 1.5

You can also move inner classes and make them outer classes with the Move refactoring. As shown in
Move 1.6, the Move dialogue appears after the caret has been placed on the desired inner class to move (in
this case class RequestProcessor on line 8) and the Move refactoring has been invoked.

 Move 1.6

After the Move refactoring has been completed, a new class is born as shown in figure Move 1.7.

 Move 1.7

 28

Introduce Variable

Most of us eventually find ourselves in a situation where our code begins to grow into an untamed beast,
and as it becomes more and more robust, it become difficult to understand. When this occurs, IDEA
allows you to initiate another cool refactoring function called Introduce Variable (also called Introduce
Explaining Variable). This function will simplify complicated expressions (or any part of one) by
transforming them into a temporary variable with a name that expresses its function.

For example, figure Variable 1.1 is your typical run of the mill expression.

 Variable 1.1

You can see that this expression is a little messy; however, if you do not think so then watch how IDEA
makes it even clearer. As shown in figure Variable 1.2, the refactoring Introduce Variable is invoked on
the expression word.charAt(word.length() – 1) .

 Variable 1.2

In figure Variable 1.3, the above mentioned complicated expression (and all of its occurrences) has now
been changed into the expression lastChar.

 29

 Variable 1.3

Then, as a closer, we invoke introduce variable once again, this time on the expression word.length() – 1
as shown in figure Variable 1.4.

 Variable 1.4

Now, go back and look at figure Variable 1.1 and compare it to our refactored expression in figure
Variable 1.4. The former is a good hard numbered mathematical expression; the latter, a nice and easy to
read word story problem. If you were working on a much larger project, and needed to find out what this
expression did quickly, no doubt it would be the story problem and not the numbers which informed you
the quickest. Not to mention, your code simply looks better.

Extract Interface / Superclass

When the time comes to radically optimize both the code’s readability and its design, Extract Interface /
Superclass are the perfect refactorings to invoke. IDEA allows you to extract from classes or public
interfaces public methods or static final fields into a new, single public interface or superclass that can be
easily shared between multiple classes. This procedure removes the need to type repetitive code or use
multiple implementations of the same object. As shown in figure Extract I / S 1.1, simply point the caret
to a class or interface you wish to bundle into a new interface or superclass, and then select Refactor |
Extract Interface / Extract Superclass from the main menu.

 30

 Extract I / S 1.1

Figure Extract I / S 1.2 shows that once the refactoring procedure has been called, IDEA launches a popup
console with various options allowing you to package the chosen interface or class, including their
relevant methods and other associated objects, into a new interface.

 Extract I / S 1.2

Once the refactoring procedure has been completed, IDEA will then prompt you for your permission to
search the usages of the parent class to replace old usages with new and improved ones as shown in figure
Extract Interface 1.3. Like other refactorings in IDEA, a tree-view will be shown allowing you to approve
your individual selections before making any changes final.

 Extract Interface 1.3

An alternative to using Extract Interface is, depending on your situation of course, to invoke the
refactoring function Extract Superclass. This function works in a similar fashion: You notice that you
have two classes that basically contain the same code, and you are tired of fixing the same bugs twice or
improving the code in more than two places (and sometimes in 100s of places), and you want to eliminate
this nuisance. IDEA will help you by automating the process of removing the common features used by
varying classes, and package the contents into one shareable superclass.

 31

Extract Method

When one is faced with a block of characters that reads more like encryption than actual code, those using
IDEA know they are fortunate to have the power to bring their coding universe back into order. The
Extract Method refactoring tool is one such enforcer of order that lets you extract code from one of these
chaotic conglomerates of code and creates for you a new, unscathed and pristine method that is easily
identifiable. In laymen terms, this means you can take a large method, and divide it up into multiple
methods that are well defined and clearly marked – and – they are easily usable by other methods, because
they are well defined.

For example, as shown in figure Extract Method 1.1, the bookletToRename method and its contents are a
large cluttered mess. To fix this, just highlight the code that you wish to extract as a new, cleaner method,
and invoke the Extract Method refactoring tool.

 Extract Method 1.1
 Extract cleaner and well defined methods from cluttered methods

As shown in figure Extract Method 1.2, a new method has been created with the bulk of the messy content
being referenced somewhere else. Now the resulting new method is easily identifiable and easily
referenced by other methods and classes.

 Extract Method 1.2

Inline Method

The refactoring tool Inline Method is the opposite of Extract Method. Then why would you want to use
it, especially after the fact that we just told you how great the extract method tool was? Simple:
Sometimes you run into too many delegation indirections that clutter code and are simply confusing, so
using inline method removes needless delegation and creates a responsible method. As shown in figure
Inline Method 1.1, you see that there is some unneeded delegation in the getEnteredName method.

 32

 Inline Method 1.1

Just move the caret to the method you want to inline, in this case the getEnteredName method, and invoke
the inline method tool to remove the indirection chaff.

 Inline Method 1.2

As shown in figure Inline Method 1.2, after the inline refactoring process has been completed, the needless
indirection has been removed, the code has been streamlined, and no bugs have been introduced.

Just to note, a good idea to keep in mind is that you can use inline method as a precursor to utilizing the
extract method function. What?!? Simply stated, sometimes there are methods that are simply factored in
a sloppy manner, and the quickest way to fix them is to first inline the sloppy code into one tidy method,
and then to initiate extract method on this new and improved block of code to create finely tuned smaller
methods that are much more friendly to share and easily identified.

Encapsulate Field

If you enjoyed playing hide-and-go-seek when you were a kid, then you are going to love the refactoring
tool Encapsulate Field. This refactoring is utilized best when you want to make data in one object
private and inaccessible from other public objects. In other words, you hide the contents of one object
from other objects that may attempt to alter the former’s behavior. As shown in figure Encapsulate Field
1.1, you see that you simply point the caret at a targeted public field, select encapsulate field, and you are
prompted with a relevant control console. In figure Encapsulate Field 1.2, once Encapsulate Field has
been invoked, it helps you create the appropriate getter and setter methods which hide the initial content of
any selected field.

 Encapsulate Field 1.1
 Select the public field you wish to encapsulate

 33

 Encapsulate Field 1.2
 IDEA has prompts you with an advanced multi-functional control
 panel to personalize your refactoring selection

Change Method Signature

Change Method Signature is a refactoring that encompasses a multitude of options for making a number
of cosmetic and design changes to any desired method signature. Specifically, IDEA lets you perform the
following changes:

• Change method name
• Add parameter
• Remove parameter
• Reorder parameters
• Change return type
• Change parameter type

It is not our intention to cover these specific refactorings in greater detail in this overview, because by
their names alone, their functions are pretty obvious. Some of these above mentioned refactorings can be
read about in greater detail in Martin Fowler’s book on refactoring previously mentioned in the
Refactoring introduction page.

J2EE Support

Creating component based J2EE modules has become the de facto standard in today’s highly competitive,
rapidly changing and complex market of B2B, B2C, and B2E (Business-to-Everything else)! Picking the
right tools for development can, literally, make the difference between making a multi-million dollar
deadline and sinking a company into oblivion.

Whether you are a small developer or part of a large corporate development team, the success of any
project is defined, to a greater or lesser degree, by its relation to its completion schedule and budget.
Working with enterprise applications is no different. EJB, JSP, and Servlets are the bedrock of J2EE, with
XML and HTML acting as mortar. IDEA gives you the power to utilize, organize, develop, and launch this
compendium of technologies in an intelligent, fast, efficient, and timely fashion.

 34

To ensure that all of your J2EE development needs are met, IDEA comes completely stocked with a vast
selection of robust and usable features, including:

• Code Completion for JSP and XML
• Syntax and Error Highlighting in JSP/XML and EJB code JSP tag library support
• XML DTD / Schema completion / validation support
• EJB Setup / Create Integration Support, Code Assistance
• EJB Refactoring support

Web Application Development

If you are a Java developer and have experience creating web based applications, then no doubt JSPs
(JavaServer Pages) have been an integral part of your development arsenal. Those who are yet to use
JSPs, here is a quick run down: JSPs are HTML pages with inserted Java code that allow web developers
and designers to quickly deploy and easily maintain dynamic and information-rich web content that is
platform and server independent.

JSPs are used to build interfaces to e-commerce back-ends, intranet based project management and
development tracking tools, and pretty much anything else that demands you utilize Java packages, a
HTML (or variant) based browser and database connections. Of course, this is a sophomoric and
simplistic description of the immense and diverse functional capabilities that JSPs possess; however the
premise should be quite clear: JSPs are invaluable to enterprise centered development tasks.

Having said this, if you are looking to utilize your limited time and resources to maximum efficiency, not
to mention code for future scalability, then IDEA is the ideal development tool to use for JSP
development. IDEA comes standard with JSP tag library and attribute code completions, code
refactorings, error highlighting, on-the-fly debugging, and even JSP deployment capabilities all from
within a single development environment.

IDEA’s JSP code completion features work in a similar fashion as its standard Java code completion
features. IDEA will automatically complete code when invoked to do so. For example, as shown in
figure JSP 1.1, once you start to code JSP tags, you simply invoke the code completion function –
selecting CTRL + Space – and a library of selections will appear.

 JSP 1.1
 JSP attribute completion

Once the selected attribute has been chosen from the automated attribute list, IDEA will automatically
complete the JSP tag by filling in all necessary static data.

 35

As shown in figure JSP 1.2, any part of a tag that allows multiple selections of data input, IDEA will
intelligently offer more attributes based upon project content to automatically complete this dynamic data.

 JSP 1.2
 Dynamic tag attributes automatically completed

In addition to basic attribute completion, IDEA also enables developers to quickly add tag library
selections, including TEI tags at the stroke of a key, as shown in figure JSP 1.3.

 JSP 1.3

XML Development

XML needs no introduction, or it shouldn’t anyway. If you have ever done any extensive programming in
Java, you have probably run into and used XML, if for nothing else to create Ant build files for faster
application deployment. For more extensive J2EE development XML is utilized for multiple purposes:
B2B (EDI, SOAP), Web service descriptors (WSDL), and even automated discovery and transaction
services (UDDI, UNSPSC, SIC, etc.).

Whatever your specific case may be, if you are going to be deploying Java applications that work in
conjunction with XML, IDEA comes equipped to help you create applications quicker and more
efficiently. How is this possible? Simple: Not only does IDEA’s editor know Java, it also enables you to
meet the demands of XML coding with its smart editing features (including automated error high-
lighting).

For example, IDEA allows you to quickly edit XML documents that support both DTD and Schema
validation. As shown in figure XML 1.1, IDEA can digest any given DTD’s specification and
automatically include these special attributes into the editor’s intelligent XML attribute completion
function.

 36

 XML 1.1
 DTD attribute validation tag

In figure XML 1.2, schema specifications, like DTDs, can be appropriated by IDEA’s editor for faster and
more accurate automated attribute-tag completion.

 XML 1.2
 Schema tag-attribute validation

In addition to the aforementioned features, IDEA also incorporates a XML error high-lighting function.
As shown in figure XML 1.3, if an error occurs in the XML code, IDEA will color-code the errors making
them easy to find and fix.

 XML 1.3

EJB Development

For those developers who are looking for a set of tools to aid you in much more complicated, robust, and
over all time consuming enterprise centered development projects – or – in other words, you need to crank
out a plethora of EJBs under a deadline or simply want to create EJBs that are flexible, scalable, and that
work quickly, then IDEA’s EJB support is just what the doctor ordered.

For starters, IDEA’s EJB wizard helps you create new beans to get you up and going quickly as shown in
figure EJB 1.1.

 37

 EJB 1.1

Once your bean has been created, IDEA will also monitor your EJB code with its integrated error high-
lighting function. Red is the magic color: major errors that prevent the deployment of your EJB will be
shown in red, including compatibility errors and errors in any of the deployment descriptors.

 EJB 1.2

IDEA’s advanced refactoring support also works during EJB development as shown in figure EJB 1.3.

 EJB 1.3

 38

Collaboration Tools

If you have read through the Overview up to this point, it is probably safe for us to assume that you are
now pretty familiar with IDEA and have a grasp of the firepower it packs with its multitude of powerful
features and functions that, among a gazillion other things, hasten development, clean up your code, and
increase productivity. However, one should never expect IDEA to rest on its laurels, because being
content is about the last thing the makers of IDEA have on their minds.

IDEA has evolved into the kind of IDE that simply cannot avoid incorporating a good thing, and therefore,
IDEA has been forged to integrate seamlessly with some of today’s most popular and most important open
source development tools the industry has come to depend on.

This section will briefly cover these various tools and point you in the right direction to where you can
download them.

CVS Integration

IDEA not only helps you develop and design code faster and more intelligently -- it also helps you
manage and organize your projects for greater work efficiency. IDEA comes standard with a powerful
CVS (Concurrent Version System) to help you manage revisions to any project’s source code files. As
shown in figure CVS 1.1, IDEA’s CVS control panel is very user friendly. The administration console
allows you to set various criteria related to CVS operation.

 CVS 1.1
 CVS preference administration console

Once your CVS preferences have been set, you are now ready to use the CVS tool itself. Under File on
the main menu, you can see three CVS menu items as shown in figure CVS 1.2.

 39

 CVS 1.2

During initial set up, you may select any of the 3 menu items to invoke the configuration panel as shown
in CVS 1.3. Once shown, you should configure the panel according to your personal set up and then select
the Test Configuration button to test and confirm the connection to the CVS system.

 CVS 1.3

If the connection test is successful, select OK to close the configuration panel. You may now connect to
the CVS by again selecting OK on the CVS Root Configuration pane. Once you are successfully
connected, you will see the directory hierarchy of your CVS folders as shown in figure CVS 1.4.

 CVS 1.4

While browsing, you can right-click any file item in the hierarchy to read the comments associated with
the last version checked in, or you can check the file out directly. By following the previous other two
main menu items, Import into CVS and Check Out from CVS, you will be presented with similar options
that are easy to understand and follow.

 40

 CVS Integration 1.5

Any change made to source files that have been added to the CVS will be highlighted blue as shown in
figure CVS 1.5. When something has been changed, but not yet checked-in, you can compare versions
and be alerted to any changes that may have taken place by color coded highlights as shown in figure CVS
1.6.

 CVS 1.6

Jakarta Ant

Those of you who depend on Jakarta Ant will find seamless integration of this powerful build tool into
IntelliJ IDEA. To utilize Ant, open a project in IDEA and then open the Ant Build panel as shown in
figure Ant 1.1.

 Ant 1.1
 Select the Ant Build panel which is by default set on the right side of the IDE editor pane vertically

As shown in figure Ant 1.2, once the Ant Build panel has been open, simply select the + menu button and
add the build file you want to initiate your build process.

 41

 Ant 1.2
 Selecting the desired Ant build file

As shown in figure Ant 1.3, once you have selected your build file (see figure Ant 1.2), a navigation
window will appear outlining the build file’s sequence of events that will initiate during the build process.
To initiate the build process, just select the run menu item. Ant will begin its build process, and if any
errors occur, IDEA’s event window will display a detailed log of the final build results.

 Ant 1.3
 View of selected build file’s contents

As shown previously in prior sections, IDEA’s standard tree-navigation window shows you the error
messages in its output if any errors are thrown. In figure Ant 1.4, you can see these error messages and
quickly navigate to their respective locations in the source code, make corrections, and restart the build
process again.

 42

 Ant 1.4

JUnit

Those who like to do things right the first time, will no doubt appreciate JUnit’s integration into IDEA.
JUnit is an open source testing framework for Java that provides users with a simple but powerful way to
express a written code’s intention and then verify that code’s behavior according to its associated
intention. This is done by initiating unit tests (each test is normally associated with a specific class), and
then testing the output of each unit.

This is done to ensure that all of your objects are doing what they are supposed to be doing. When each
object does what it is supposed to be doing, then you won’t have to waste time later debugging. It is a
pretty straight forward philosophy.

It is for this highly practical (and rather obvious) reason that IDEA has integrated JUnit. IDEA has an
easy to setup and configure JUnit control panel that helps you quickly run unit tests directly from IDEA.
You just simply invoke a test case method near your intended target object and the results of the test will
be visible in an output pane. As shown in figure JUnit 1.1, the results in the output pane are easy to read
and interpret. The output pane also allows you to quickly navigate to troubled areas and make immediate
corrections in your source.

 JUnit 1.1

 43

Jikes

If you require a Java compiler with a little more juice and packs the compilation speed of a super-sonic jet,
then Jikes is the complier you need to use.

JikesTM is a compiler that translates JavaTM source files as defined in The Java Language
Specification into the bytecoded instruction set and binary format defined in The Java Virtual
Machine Specification.

This open source IBM production is noted not just for its speed, but also because it has the uncanny ability
to offer alternative selections to misspelled identifiers and it is equipped with an incremental compiling
feature along with an automatic makefile generation function. This is a jet that comes fully-armed!

If you want to test drive Jikes through IDEA, you won’t find setting it up a problem. Simply download
and install Jikes, change the Compiler properties to you liking, and set Jikes as your active compiler and
point to its path. As shown in figure Jikes 1.1, the control console is pretty straight forward.

 Jikes 1.1
 Select Jikes radio button and point to Jikes path to set up

Visual SourceSafe

When multiple people form a work group with specific goals in mind, regardless of the endeavor, their
success nearly always depends on their ability to communicate and work together in a concerted and
effective effort to achieve those common goals. When this scenario is applied to the development world,
we see that projects are completed timely and efficiently when project managers, developers, and other
essential parts of these groups are well informed of each other’s progress.

This is why IDEA was developed to be easily integrated with Microsoft’s Visual SourceSafe, an industry
leading document management and versioning control system application.

As shown in figure Visual SourceSafe 1.1, IDEA incorporates an easy to use and set up SourceSafe
control panel allowing you to quickly set up and begin to utilize your SourceSafe installation within
minutes.

 44

 Visual SourceSafe 1.1

StarTeam

Borland’s StarTeam® is another handy application for sharing and managing development code and
project responsibilities, and like Visual SourceSafe, it easily integrates with IDEA for effective cross-
application collaboration. As with the previous figure Visual SourceSafe 1.1, simply select StarTeam
under the Version control: drop down. Here you will be instructed to copy the starteam-sdk.jar file into
your IDEA distribution/lib folder. Once the starteam-sdk.jar has been copied over, you will be able to
configure your StarTeam setup as shown in figure StarTeam 1.1.

 StarTeam 1.1

Resources

JUnit: http://www.junit.org

Jakarta Ant: http://jakarta.apache.org/ant/index.html

Jikes: http://oss.software.ibm.com/developerworks/opensource/jikes/

 45

http://www.junit.org/
http://jakarta.apache.org/ant/index.html
http://oss.software.ibm.com/developerworks/opensource/jikes/

Visual SourceSafe: http://msdn.microsoft.com/ssafe/

CVS: http://www.cvshome.org

StarTeam: http://www.borland.com/starteam/

Open API

After getting acquainted with IDEA, you will quickly realize that it comes with a hefty selection of
development features and integrations that will more than satisfy the most “tool hungry” developers out
there. However, in case IDEA doesn’t have a feature you want or lacks integration with some obscure
tool, you have the opportunity to add such feature or integration yourself.

Third party developers will be happy to know that their application’s functions can be called directly from
IDEA. In addition, they can incorporate a number of IDEA’s features directly into their own applications.
From a developer’s perspective the Open API gives access to a whole new “eco-system” of development
tools that accommodate and enhance IDEA’s already industry setting capabilities.

IntelliJ IDEA Developer Community

Users interested in coding their own plug-ins for IDEA or extending some of IDEA’s functionality into
their own applications, are encouraged to check out the IntelliJ Community website at: www.intellij.org
Here one can find among other things a large and growing list of plug-ins for IDEA, most of which are
free to the public for use and many times open source.

Automated Plugin Installation and Update Tool

In case IDEA does not come with a specific tool you desire, you are now aware that you can always code
your own plugin for IDEA, or alternatively download one of the many free tools available from the
IntelliJ Developer Community. If you wish to download additional tools, you can now do so with
IDEA’s built-in automated plugin installation and update tool. As shown in figure Plugins 1.1, just open
IDEA’s File | Setting | IDE Settings | Plugins tab, and see the plugin icon on the left menu.

 46

http://msdn.microsoft.com/ssafe/
http://www.cvshome.org/
http://www.borland.com/starteam/
http://www.intellij.org/

 Plugins 1.1

After the Available tab has been selected, a list of all the downloadable plugins for IDEA will appear.
Once the list has loaded, right-click on a specific plugin you want, and select either Download and Install
or Update Installed plugin.

Once the plugins you have installed have been downloaded, restart IDEA and they will then be
automatically deployed by IDEA and ready for use.

Free Community Plugins

Just to give you a taste of some of the real cool and useful plugins that members of the IntelliJ community
are developing, we would like to introduce 3 of the more widely used and popular plugins available
through IDEA’s automated plugin installer:

InspectionGadgets

The InspectionGadgets plug-in extends IDEA’s built-in code inspection and error reporting functionality
with over 270 new code inspections, creating a super powerful and productive code analysis environment.

Once InspectionGadgets has been installed, IDEA will automatically search through your code for
common errors, code weaknesses, and places for improvement. InspectionGadgets provides further
inspections in the following categories:

• performance problems
• confusing and error-prone code constructs
• common bugs
• design flaws
• initialization problems

 47

• naming conventions
• threading issues
• internationalization problems
• style issues
• portability concerns
• Common JUnit errors
• class and method metrics (size, algorithmic complexity, coupling)
• many more…

While InspectionGadgets is comparable with the best commercial and open-source static-analysis tools in
terms of number of inspections reported, its real value comes in the tight coupling of static analysis and
code editing. With InspectionGadgets and IDEA, errors can be shown during editing as “yellow-line”
warnings, with tool-tips describing each error for easy comprehension. Errors can be quickly navigated to
using “Find next error” (F2) function, so that they can be easily fixed. Even more impressive, fifty of the
inspections come with “quick fixes”, which let the user automatically fix the error with a keystroke. Add
it all up, and the pairing of IDEA and InspectionGadgets can’t be beat for either finding bugs or
preventing them.

 Over 270 additional inspections with InspectionGadgets

 48

 InspectionGadgets’ easy to read and navigate inspection report

Intention Power-Pack

IDEA broke new ground in version 3.0 with “programming by intention”. With “programming by
intention”, many simple programming actions or “intentions” were made available to the developer based
on their current editing position. Clicking on the name of an abstract class, for instance, would bring up
the “light bulb” icon, presenting the programmer with the option to create a new sub-class of it. The
Intention Power-Pack plugin adds additional intentions to IntelliJ IDEA, automating a lot of common
programming tasks. Intentions are provided by Intention Power-Pack to perform the following:

• Convert && to ||, and vice versa
• Reorder and simplify boolean expressions
• Convert “.equals()” expressions to “==”, and vice versa
• Replace switch statements with if statements, and vice versa
• Convert ternary conditional expression (?:) to if-then-else statements, and vice versa
• Translate integer literals between decimal, octal, and hexadecimal
• Replace simple assignments with operator assignments
• “Flip” boolean operations, numeric comparisons, and commutative method calls.

 49

The following two figures show the replacement of && to || with Intention Power-Pack:

 50

Rearranger

The Rearranger plugin rearranges (reorders) class and class member declarations according to a user-
specified order and/or method call hierarchy. For example, take the following sample class in figure
Rearranger 1.1:

 Rearranger 1.1

To use Rearranger, just invoke its control panel and set specific rearrangement rules as shown in figure
Rearranger 1.2

 Rearranger 1.2

The plugin can optionally display the proposed rearrangement in a popup similar to File Structure (Ctrl-
F12), but showing the items matching each rule, and showing the method hierarchy as shown in figure
Rearranger 1.3

 51

 Rearranger 1.3

In this example case, the Rearranger was configured to move called methods below their callers; this is
why method2() appears just below method1().

Once the rearrangement process has been initiated, the resulting source will appear as shown in figure
Rearranger 1.4.

 Rearranger 1.4

 52

 53

The Rearranger is also able to generate comments conditionally (see rule 3 and line 23), and will remove
old comments before rearranging so that generated comments aren’t duplicated.

To get more information about the above three community plugins, please see www.intellij.org for more,
in-depth descriptions of each plugin and their related features and functions.

Conclusion

After reading through this Overview, you should have a clear conception of the main features and
functions IDEA 4.0 comes equipped with. What you cannot garner from reading this Overview, however,
is a better understanding of how it actually feels to use IDEA; what cannot be written on paper or in
electronic form will certainly be assuaged by actually using IDEA. Many other IDEA features which we
did not cover in this Overview were not covered because there is no way to manually invoke them, they
are autonomic, and like the beat of a heart, they just work as you code. It is therefore imperative, that
once one has read the Overview to get an idea, they follow up by trying IDEA to also get the feeling. To
have this complete experience, there is only one thing left to do, and that is to download a free evaluation
of IDEA and to try it. After all, what do you have to loose besides your old IDE?

Download: http://www.jetbrains.com/idea/download/index.html

- Finis -

http://www.intellij.org/
http://www.jetbrains.com/idea/download/index.html

	IntelliJ 4.0 Overview
	Contact
	International Sales
	North American Sales
	Sales Offices
	East coast
	West coast
	Canada

	On the Web
	Acknowledgements
	About IntelliJ IDEA
	Why Read This Overview?
	IntelliJ IDEA: The Intelligent, Usable Java Editor
	New Features in IntelliJ IDEA 4.0
	GUI Designer
	Generics Support
	Modular Project Creation
	BEA WebLogic Integration
	HotSwap Debugger
	Split Editor

	Code Completions
	Basic (Ctrl + Space)
	Smart-Type (Ctrl + Shift + Space)
	Class Name (Ctrl + Alt + Space)

	Import Assistant
	Live Templates
	Searching for Usages
	Code Layout Manager
	Optimize Imports
	Intention Actions
	Opening Class by its Short Name
	Keymapping
	Navigation
	Code Inspection
	Refactoring
	What is Refactoring?
	Renaming
	Move
	Introduce Variable
	Extract Interface / Superclass
	Extract Method
	Inline Method
	Encapsulate Field
	Change Method Signature

	J2EE Support
	Web Application Development
	XML Development
	EJB Development

	Collaboration Tools
	CVS Integration
	Jakarta Ant
	JUnit
	Jikes
	Visual SourceSafe
	StarTeam
	Resources

	Open API
	IntelliJ IDEA Developer Community

	Automated Plugin Installation and Update Tool
	Free Community Plugins
	InspectionGadgets
	Intention Power-Pack
	Rearranger

	Conclusion

