Intelll) IDEA 4.0

Develop with pleasure!

Copyright (©) 2000-2004 JetBrains, Inc. All rights reserved




© 2000 - 2004 JetBrains, Inc. All rights reserved.

JetBrains, IntelliJ, IntelliJ IDEA, and IntelliJ Labs are either registered trademarks or trademarks of
JetBrains s.r.o. in the Czech Republic and in other countries. The names of actual companies and products
mentioned herein may be the trademarks of their respective owners.

Information in this document is subject to change without notice. JetBrains, Inc. makes no warranties,
neither expressed nor implied, in this document. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or
by any means (electronic, mechanical, photocopying, recording or otherwise), or for any purpose, without
the express written consent of JetBrains, Inc.

Contact

International Sales

JetBrains s.r.o.
Klanova 9/506
14700 Prague
Czech Republic

Phone: +420 2 4172 2501
Fax: +4202 6171 1724
sales@jetbrains.com

Evaluation support:
support@jetbrains.com

On the Web

North American Sales
East coast

33-C South Main Street
Medford NJ 08055

Phone: +1 (609) 714 7883
Fax: +1 (609) 714 7886
sales.us@jetbrains.com

West coast

1670 So. Amphlett Blvd. -
Suite 214
San Mateo, CA 94402

Phone: +1 (650) 378 8571
Fax: +1 (650) 378 8591
sales.us@jetbrains.com

Canada

207 Barnes Street
Kempville ON KOG 1J0

Phone: +1 (613) 258 0575
Fax: +1 (613) 258 5979
sales.us@jetbrains.com

www.jetbrains.com
www.jetbrains.com/idea
www.intellij.org
www.intellij.net

Corporate Website:

IntelliJ IDEA Website:
IntelliJ Community:

IntelliJ Technology Network:



mailto:sales@jetbrains.com
mailto:support@jetbrains.com
mailto:sales.us@jetbrains.com
mailto:sales.us@jetbrains.com
mailto:sales.us@jetbrains.com
http://www.jetbrains.com/
http://www.jetbrains.com/idea/
http://www.intellij.org/
http://www.intellij.net/

Acknowledgements

Special thanks to all of the community members who offered suggestions and constructive feedback for
this Overview, and who spent countless hours of their valuable time bug hunting and giving critical
feedback to help make IDEA what it is today, this includes but is not limited to: Alain Ravet, Glen
Stampoultzis, Guillaume Laforge, Jacques Morel, Jonas Kvarnstrom, Oleg Danilov, Robert F. Beeger,
Robert S. Sfeir, Thomas Singer, and the Team JetBrains members not mentioned specifically herein.

About IntelliJ IDEA

IntelliJ IDEA is the industry’s smartest and most user friendly Java IDE in the market place today. No
other IDE enhances developer productivity like IDEA, a fully loaded IDE with industry setting refactoring
tools, intelligent code editing assistance, a diverse array of J2EE development features and integrations for
rapid web-application development, a powerful Code-Inspection tool, advanced CVS support, an Open
API for third-party plug-in support, GUI designer, support for JSR-14 (Generics), and a host of other
features to secure this boast. If that wasn’t enough, IntelliJ IDEA is the industry’s only IDE that was built
from the ground up to enhance productivity and provides an ergonomic development environment to suit
individual tastes and coding styles.

Why Read This Overview?

IntelliJ IDEA 4.0 Overview was written for developers, project managers, architects, and even sales staff —
those who have used prior version of IDEA or those who are new to the IDEA experience. While there is
no better way to learn IDEA than by downloading it and actively trying it, this overview is targeted at
individuals who wish to accelerate their learning curve through written print before sitting down in front
of a computer and starting IDEA.

This overview assumes you have a rudimentary understanding of Java fundamentals and Object-orientated
programming; it is not necessary for you to have an expert, zealot like understanding of all Java based or
centered technologies. IDEA is a very user friendly tool and will quickly prove to be an excellent
companion for you, whether you are an advanced Java developer or a new student of Java. This overview
hopes to be as friendly.

We hope that this overview will be of assistance to you as you begin your journey on IDEA 4.0, and we
are confident in saying that once you have given IDEA a fair hearing, it is unlikely you will want to
replace it with anything else.

IntelliJ IDEA: The Intelligent, Usable Java Editor

Ever since IntelliJ IDEA made its debut into the Java IDE industry in 2001, the expectations for IDE
performance have been forced up a notch. What then became the world’s smartest and most usable Java
IDE on the planet has continued to lead and push the envelope in terms of usability, refactoring, and code
automation features that have remained unparalleled in the market by its imitators.

IDEA’s mana has always been summed up in two words: Intelligence and Usability. IDEA has never
promised to be the “everything editor” — it has always promised to be first and foremost a complete Java
editor with the ability to understand the code in its editor as good as those who wrote it.



Every aspect of IDEA’s construction, its features, functions, Ul layout, and integrations were all
specifically designed to maximize developer ergonomics. As noted earlier, this ergonomic aspect is what
has made, and continues to make, IDEA the industry’s most intelligent and user friendly IDE available.

The following sections of this overview will cover the main features available in IDEA, giving you an
extensive taste of why IDEA has become the de facto pioneer in IDE innovation, and why we continue to
unabashedly maintain our motto: “Develop with Pleasure!”

New Features in Intellid IDEA 4.0

GUI Designer

IDEA now comes powered with a new GUI Designer to let you rapidly create any type of interface for all
of your development needs. Its component layout paradigm and intuitive user interface enable you to
quickly and easily deal with dialogs and panels regardless of complexity. As shown in figure GUI 1.1,
IDEA provides an easy to utilize point-and-click grid layout pane for GUI construction.

BB A A A AN | ok | | Cancel

1 Amend | Make New

GUI 1.1

Moreover, IDEA completely separates you from working with the interface code itself. You can safely
skip the details with developing layouts, Swing, etc. All interface coding is simplified to linking your
class members with corresponding interface elements as shown in figure GUI 1.2.

Property | Walue |
binding Testhutton| [+
Horizontal Size Palicy Zan Shrink, Can Grow
Wertical Size Policy Fixed
fill Mone
anchor ek
Row Span 1
Zaolumn Span 1
Mlimirurn Size [-1, -1]
Preferred Size [-1, -1]
Mazximum Size [-1, -1]
enabled [¥]
harizantalaligrment Leading
harizontalTextPosition Trailing
selected -
ket wrnend
bl TipText
verticaldlignment enker
verticalTextPosition Cenker
GUI 1.2




As shown in figure GUI 1.3, even IDEA’s traditional code completion and intention action features
work within the GUI designer tool.

Properky | Yalue
H:Ii; bind to class, To legalwebForm class

iCreate Class 'To legalwebForm class'|

GUI 1.3

As shown in figure GUI 1.4, Swing components are added to your grid from a simple to utilize Swing
component tool bar. IDEA also allows you to add additional components and component libraries (from
IDE Settings) to the existing palette to extend its power even more.

# R RAMEIEDODA=mI=EEEHDR

| JPasswordField (javax, swing) |

R4

| Ok || Cancel

1]

Tdmend | Make Mew

GUI 1.4

You can learn how to use IDEA’s GUI Designer tool quickly by watching instructional videos on how to
build, wire together, and deploy a form from this powerful tool, available here:
http://www.jetbrains.com/idea/training/ui_designer.html

Generics Support

Although at the time of this writing, no Sun finalized or stable implementation of Generics (JSR-14)
exists, developers can still make use of Sun’s beta implementation of Generics currently available in the
beta version of JDK 1.5. To start using Generics, just utilize JDK 1.5 for the module/project with generics
code, and then under Settings | Compiler, uncheck the Use generics-enabled compiler option and add —
source 1.5 to the Additional Javac command line parameters ficld as shown in figure Generics 1.1.


http://www.jetbrains.com/idea/training/ui_designer.html
http://www.jcp.org/aboutJava/communityprocess/review/jsr014/

Use compiler: () Javac () Jikes
Javac Qptions

[w] Generate debugging info

[¥] Report use af deprecated Features
[_] Senerate no warnings

[] Use generics-enabled compiler

. b =
additional Javac command line parameters; |-51:|ur|:e 1.5 ||E-;

Maximum heap size (MB: |128 |

| (] 4 || Zancel || apply || Help |

Generics 1.1

Nota Bene: 1IDEA version 4.1, which will be a free upgrade to all who purchase IDEA 4.0, will seamlessly integrate Generics once the implementation has
been completed. The above mention settings will no longer be needed at that time.

Once IDEA has been setup to use Generics, these new Generics libraries will be indexed by IDEA’s code
completion tool. Once implemented into source, Generic code fragments will now be easily handled as
shown in figure Generics 1.2.

24 ]

25 EI List<3tring- ge!&erifyﬂethnd.&eturn’f‘gme(] !

26 List<3tring> list = new LinkedList<3tring>():

a7

ot list.add{generifyMethodReturnType() .. get(0) )

29

30 return list;

3 EI ; Generics 1.2

Modular Project Creation

IntelliJ IDEA’s new modular project structure provides greater flexibility for configuring, setting up, and
organizing your projects. In particular, it improves the management of complex projects with multiple
internal dependencies and is especially useful for J2EE centered projects, where multiple projects have a
tendency to share a lot of common code (connection handlers for example). Using modules not only eases
project and code management by helping you divide and organize your projects with logically associated
components, but also lets you share actual code, removing the need to make copies of the same package
and classes because modules can be reused among separate projects.

Since a module exists as a separate logical part of a project, incorporating working sources, libraries,
reference to a target JDK and more, it can thus be compiled, ran or debugged as a standalone entity.
IDEA separates modules into the following specific module types: Java modules, EJB modules, Web
modules and J2EE Application modules.



E

Modules:
e | ) EXBModueSettings | [+ Weblogic Server Settings | 1] J26E Buid Settings |
I+ A4dd =/ Remave = :
| 4 Paths | 2 Libraries (Classpath) || (%) Dependsnicias || hﬁ Crder |
AP MainElR
S8 MyApplication Cukpuk path: |C:\,MyProjects'l,WebLogicSupport'l,MainEJB'l,classes || |
m MyEsD Test autpuk path: |C:'I,MyF‘rojects'l,WebLDgicSupport'l,MainEJB'l,test_classes || |
W MyWebdpp
[#] Exclude oukput paths
1
%F\dd Content oot [ JExcluded [ Sources [ Test Sources
B C:MyProjects’WeblLogicSupport'\MainEJE @ |5 i{::'gMyProjects'l,webLogicSupport‘l,MainEJBE
" | Source Folders [ classes
I e 3 stc
Test Source Folders [ test_classes
tests =] [T tests

Far files outside module file directory: 8 Use absalute path O Use relative path

Far files outside project file directory: ) Use absaolute path ) Use relative path

[—] Enable ‘assert’ keyword (valid For 10K 1.4 or later, effective on reskart)

OF | | Close Help

Modules 1.1

As shown in figure Modules 1.1, the modules Path pane allows you to assign module dependencies and
organize (or re-organize) existing modules within an easy to use administration panel.

BEA WebLogic Integration

Those who depend on BEA’s WebLogic Application Server to run their enterprise applications will be
happy to know that IDEA now includes integration support with this industry leading application server.
In projects created to work with WebLogic, IDEA fully supports and makes it easy to implement
WebLogic-specific tags and deployment descriptors, and more. In addition, you can work with several
different WebLogic servers at the same time. To do so, you simply setup a new WebLogic instance in
IDEA WebLogic integration control panel as shown in figure WebLogic 1.1. This easy and rather
intuitive configuration pane makes deploying WebLogic applications a snap. In IDEA’s additional
WebLogic tool window, the Deployment View, the process of deploying a WebLogic application is as
simple as pressing the single Deploy button. IDEA takes care of all corresponding details once this has
been done.



@mpp Server Integration ﬂ

| Genetic Application Server || M BEA WebLogic |

[v] Enable Weblogic integration

—wweblogic Server Installed Locall
BEA Home:

|c:'|,bea |V " |

‘Weblogic Server version: 8.1.1.0

—‘Weblogic Server Deployment ConFiguration:

[ & = [% + L Name: |NewL0caI |

Ml Mew Local Adrmin User: |webl0gic Password: |**++xxx=x |
i) Mew Remote
bt localhost Remaote Host: localhost Park: 7001
i
BEA Harne:!
|c:'|,bea |v " |

‘WWebLogic Server version: 8.1.1.0

‘WebLogic Domain path:

|C:'l,bea'l,userjrojects'l,domains'l,testdomain |V " |

Program parameters

| ""—"A

VM parameters
| E

~Additional Classpath

<wWeblogic JAR = Move Up

Move Down
Remove

Add Jar or Directary, ..

Add Global Library. ..

84 || Cancel || Apply || Help |

WebLogic 1.1

HotSwap Debugger

One of the more widely used and critical features needed in any IDE is a fast working and effective
debugger. This is why IDEA has integrated a JPDA-based debugger that is not only extremely fast and
simple to utilize, but also now includes the ability to perform HotSwap Debugging. A HotSwap enabled
debugger allows you make changes to your code while the application is still running, removing the need
to stop and start the application repeatedly to correct coding errors. Simply invoke the reload function to
reload the changed object, and continue the debugging process.

Note Bene: HotSwapping allows you to edit existing methods, fields, and constructors. However, it does not allow you to add new methods, fields, or
constructors; you also cannot change field types, method signatures, nor can you delete methods, fields, or constructors in the given class. Doing so will lead to
hotswap errors being thrown. You can read a more in-depth overview of how hotswap debugging works from:

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jdi/com/sun/jdi/VirtualMachine.html#redefineClasses(java.util. Map)

As shown in figure Debugging 1.1, IDEA’s powerful debugger incorporates a very friendly and intuitive
user interface that allows you to quickly hunt down and correct code errors should they happen to arise.


http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jdi/com/sun/jdi/VirtualMachine.html

0 ¥ - D
3 entrylist. addElenent (entry) ; |
34 H

35 input.close(l:
36 }

37 catch(FileNocFoundException e){

35 @ new File(file).createllewFile(];

30 return null; =
Debug - Debugging AddressBook @ & |

* Eg| =7 Console || Threadsl =] Frame " foF Watches ‘

> 3 (i) The application is running
il e
[~ I

+1
H e
X Ly

oy

r‘_l"

Debugging 1.1

You can select an entire class file, block of code, or just single lines of code to observe during the
debugging process, and you can access the debugger’s output in an easy to read tree-view pane as shown
in figure Debugging 1.2.

253 current. fHame = firstHame.getText():

254 current.1Hame = lastHame.getTexti):;
255 current ., hPhone = homePhone. getText()
current . mPhone mobilePhone . getText(]
257 current.. fPhone -
4 |k : [ »]
Debug - Debugging Address Book =] HH
* 53 | =] Consale ” Threads H Frame | o Watches ‘
P 3 $ § = | saveToMemi): 256, addressbook,,, | J."r‘ Thread "AwT-EventOueue-0"@7 13 skatus: RUM.,,
I8 &7 |E <@ this = {addressbook. AddressBook@s42} —
" @ enkryList: addressbook, Sortablevector = sige =7
@ current: addressbook, Entry = {addressboolk, Entry@s04}
+1
Ei @ @ display: javax.swing, JLabel = {javax. swing, JLabel@s95};
X 0y Hlpos:ink=10
- 50 emphy; boolean = False
= .
@ do 5 newEntry: boolean = False
=
d:"" @ nokedrea; javax.swing. JTextarea = {javax.swing, ITextArea@adn -
} $ Debugging Address Book )
Debugging 1.2

Split Editor

If you are the kind of developer who likes to work with multiple source files at one time (or just like to
compare files side by side), you can now open two IDEA editors simultaneously for maximum viewing
pleasure. To do so, simply select a source file’s tab as shown in figure Split 1.1.

&l index.jsp bl SirmpleSP kil 4l SimpleJSPjsp

<ldoctype htwml public "-//w3c//dtd htwml 4.0 transif
<html

Split 1.1




Right-click on the selected tab and then choose either New Horizontal Tab Group or New Vertical Tab
Group as shown in figure Split 1.2, and a new editor pane will be opened with the selected tab file
according to the New Horizontal/Vertical Tab Group selection as shown in figure Split 1.3.

- - T - . ] T :

gl inde Close CHieFd mpleJSP jsp
Be Clase All But This HICT horder
63 Close Al erdana" =iz
6
55 Mewy Harizontal Tab Group
aa Mew Vertical Tab Group
a7 Move to Opposite Takh Group C75" bhordex
L Change Tab Groups Orientation n">Toncat Split 1.2

Il SimpleJSPhtmi | ol SimpleJsP.jsp la indexjsp
1 <HTML> | 1 <!doctype html public "-//w3c//dtd html 4.0 transitional//e= F
H <HERD> 2 <html> ‘
S| <TITLE-3imple J5P Exanple</TITLE: ] <head>
4 </HEAD> 4 <meta http-equiv="Content-Type" content="textshtml; c
5 <BODY: 5 <title><%= application.getierverInfo() %</ title>
[ & <style type="text/css">
7 <CEHTER:= 7 i
g g body
9 <PrHow many times?</P> 9 color: #000000;
10 10 hackground-color: #FFFFFF;
11 <FORM METHOD="Get" ACTIOH="SimpleJSP.jsp"> 11 font-family: Arial, "Times New Roman", Times;
12 <IHPUT TYPE="Text" SIZE="2" HAME="nmumtimes": 1z font-size: 16px;
13 <INPUT TYPE="Submit": 13 }
14 < /FORM= 14 Spllt 1.3

Alternatively, if New Vertical Tab Group is selected, the new editor is opened column wise as shown in
figure Split 1.4.

I [hl SimpleJSP.html | E SimpledSP jsp _

1 <HTML >

2 <HERAD

3 <TITLE>=3inple J3F Example< /TITLE>

4 < /HERD=

5 <BODY>

5]

7 < CEHTER-

g

] <PrHow many tiness<d /P>

10

11 <FOFRM METHOD="Get" ACTIOH="SimpledJSP.]jsp">
1z <IHPUT TYPE="Text" SIZE="2" ="numtimes" >
13 <THPUT TYPE="Submit":

14 < /FORM-

15

15 < /CEHTER:-

17 < /BODY-

15 < /HIML=

& index.jsp

58 -

5a

a0 "1" cellspacing="0" cellpadding="3" bhordercolor="#000000">

gL

52 C" hordercolor="#000000" align="left" nowrap>

63 da.na“ size="+1"><ix>Adninistrations /AAxenbspenbspranbspranhsp Split 1.4

9



Code Completions

There has always been a dichotomy between code quality and coding quickly. Tradition has it that one is
normally sacrificed to obtain the other and that it is almost an impossible task to bring the two together
into a harmonious synthesis. Well, that was exactly what was happening until IntelliJ IDEA walked on
the scene.

IDEA comes equipped with three robust types of code completion features to help you accurately speed
up your coding responsibilities: Basic, Smart-Type, and Class Name completions.

Basic (Ctrl + Space)

IDEA’s Basic code completion feature not only completes basic Java syntax for you, but will also
dynamically create a selection list of usable code completions based upon what has been written in the
editor. As shown in figures Code Completions 1.1, 1.2, and 1.3, as new objects are added to your source,
IDEA memorizes and then allows you to recall complete variables by selecting Ctrl + Space on the
keyboard.

int mumberoftrainsperhour;
int mumberofplanesperhour;
int mumberofcarsperhour;

¥ i

Code Completions 1.1

o mumbherofplanesperhour int

ﬂi rumherofcarsperhour
v
W

o rmumberoftrainsperhour int

Code Completions 1.2

int mumberoftrainsperhour;
int mumberofplanesperhour;
int mumberofcarsperhour;

numherufcarsperhnurL

Code Completions 1.3

As shown in figure Code Completions 1.4, the Basic code completion feature will also allow you to
quickly access and insert any Java class, method, and variable from any package that has been imported or
has been previously used.

3 O public wvoid rateButton() !

35 é JButton trafficType = mew JButtoni):

<IN trafficType. addi|

37 @ } o = addictionlistener (Aotionliztener)

38 é m' & addincestorlistener (Anecestorlistensr) woid

=  } Code Completions 1.4

addActionListener method implementation from javax.swing.* package

10



Smart-Type (Ctrl + Shift + Space)

IDEA’s Smart-Type code completion functionality helps users select the correct data types to implement
in relevant locations depending on what has already been coded. For example, as shown in figure Code
Completions 1.5, when the Smart-Type completion feature is invoked, a popup with appropriate selections
appears ready to implement the selected item.

37 E‘ public woid rateButton()

3a JButton trafficType = mew JButton():
39 trafficType.adddctionlistener (new ACL

an o } I & Aotion
a

az
az
44

ﬂ & AotionListener (3 SAWC.event) f.. . b
C & ActionScroller
C & ActivatorPanel

Code Completions 1.5

Once the desired item from the popup has been selected, IDEA will automatically implement it with all of
its corresponding components as shown in figure Code Completions 1.6.

57 O public void rateButtom{) {

38 JButton trafficType = new JButton():

39 5! trafficType.addictionlistener (new Actionlistener() {

an @t 6 public woid actionPerformed(ActionEvent actionEwvent) |

41 F¢To change body of implemented methods use Options | File Templates.
2 O }

a3 o 1

Code Completions 1.6

Class Name (Ctrl + Alt + Space)

IDEA‘s Class Name completion feature as shown in figures Code Completions 1.6 and 1.7 makes it easy
to automatically suggest and implement the name of any class (and its corresponding import, if needed)
anywhere in any project or library. (Basic code completion, on the other hand, utilizes only imported
packages or those being resolvable in the current scope).

15 public class initiationClass extends JPl
16 = JPanel (3
17 ) % JPasswordField
1 o) & IPEG
23 C! @ JPEGBuffer

L' @ JPEGCadec
z1
- I' & JPEGDecodeParan
- I & JPEGEncodeParanm
24 C! @ JPEGHuffmanTahle
25 C) & JPEGHuffmanTahle
26 I' @ JPEGImagelecoder

C' @ JPEGImageDecoder .
1 2 Code Completions 1.6

List of selectable classes in popup after Class Name code completion function has been invoked
15 public class initiationClazz extends JPanElL
la .
Code Completion 1.7

JPanel is implemented along with its required import package javax.swing.*

11



Import Assistant

One basic but very important feature that really enhances productivity is IDEA’s Import Assistant. Just
start typing the Java class short name into the editor and the import assistant will automatically launch a
popup suggesting that you import its relevant corresponding Java class as shown in figure Import Assistant
1.1.

2) javax.swing.JPanel? Alt+Enter
public class importhssistant extends JPanelI {

2 T ST X

} Import Assistant 1.1

Not only will IDEA make the suggestion, but it will enable you to actually import the suggested Java class
with one stroke of the keyboard. In figure Import Assistant 1.1, you will notice that IDEA has identified
the Java class short name lacking an import statement and has offered to import the corresponding class by
pressing Alt + Enter.

import javax.swing. *:

public class importhzsistant extends JPa.nEll {
'

[ T T

Import Assistant 1.2

In figure Import Assistant 1.2, after selecting Alt + Enter on the keyboard, the statement is imported, the
popup disappears, and the red text on JPanel (error highlighting feature) vanishes. All of this is done
without your caret position moving!

The import assistant also works when importing large blocks of code. For example, if you copy a block of
code from one project file, and you paste this block of code into another project file, the import assistant
will automatically prompt you for permission to import the relevant Java classes that are lacking in the
target class/interface. In figures Import Assistant 1.3, 1.4, 1.5, you can see the copy and paste process in
action.

3 import javax.swing.*:
4
5 public class importassistant extends JPanel {
&
7 JEutton importl
g JEutton import? = null:
9 JButton import3
10 J3crollBar scoller = null:; )
Import Assistant 1.3

Copying from one project

12



public class importdssistant {

JEutton importl null;
JEutton imports null;
JButton importd = null:;

@?Eelect Classes to Impork

LT w ST [ T o Y O Y % }

10
11 .
12 The code fragment which you hawve pasted usezs classes
13 ) that are not accessible by imports in the new context.
14 Select classes that you want to import to the hew £ile.
15 C Jawax. swing. JButton
16 Import Assistant 1.4
Pasting into new project and being prompted to import new class

2

3 import Javax.swing. *;

4

5 public class importassistant !

6

7 JEButton importl = null;

5] JButton import? = null;

9 JButton import3 = null:;

. Import Assistant 1.5

Missing class has been imported

Although for illustrative purposes we have used a very simple code example, IDEA does not have a
problem handling large code selections and importing any requisite classes. When IDEA prompts you
with the class import dialog, as shown in figure Import Assistant 1.4, you can select any class to import (or
not to import), and should you miss anything once you have made your selection, IDEA will again prompt
you asking if you wish to make any additional imports for any missing item.

Live Templates

IDEA is the ideal IDE for rapid development. It incorporates an advanced Live Templates technology
that enables developers to input lines of code constructs by short name that inputs evaluated expressions
and type casts all with single key strokes. Coding has never been faster or easier! As shown in figure
Live Templates 1.1, you only need to type the short name to invoke the live template.

204 countryField. setText (current . country) ;

205 itco|,

206

207 notefrea. setText(""); Live Templates 1.1

Short name template “itco” (Iterate elements) being implemented

The entire live template index can be accessed by selecting Code | Insert Live Template from the main
menu or by pressing Ctrl + J on the keyboard as shown in figure Live Templates 1.2. You will notice that
if you begin typing, the menu will adjust according to the first known characters you input, allowing you
to narrow down your selections quickly.

13



204 countryField. setText (current .country) ;

2085 it

206 itar Iterate elements of array

207 Iterate elements of jawa.util.Collection |G

2B iten Iterate java.util.Enumeration

233 ititc Iterate jawva.util.Iterator

— Iterate elements of Jjava.util.list

212 ifii < [(Entryv.maxWNoles-1))1{ Live Templates 1.2

Ctrl + J brings up the live template index

When an item from the index is selected, the corresponding template is implemented as shown in Live
Templates 1.3

205 countryField, sectText (current..country) ;
Z0a for (Iterator pR==atdaid = entrylist.iterator(); iterator.hasNext():) {
207 Entry entry = [Entry) iterator.nexti);

Live Templates 1.3

Depending on your project’s requirements, you can edit the existing templates or add more templates to
the index by creating your own. To call up the Live Templates editor, select File | Settings and then
select the Live Templates icon on main settings pane. Once you have brought up the Live Template list,
you can select the Live Template you wish to edit or add a new one. The process is pretty straightforward
as shown in figure Live Templates 1.4.

Abbreviation Description Active
2 collections Add..
22 htmlixml
7 iterations Copy...
4 ather ’—
Edit...
= 25 output #
) serr Prints a string to System.err [v] Rermove
2 sout Prints a stting to Systerm.out [v] 4
) soutm Frints current class and method names to System.out [v]
| ity Prints a value to System.out [v]
4 plain
4 surround
Live Templates 1.4

Live Templates editing / adding panel

Searching for Usages

Working in large projects can sometimes overwhelm your ability to keep track of every class, method,
field, or variable in a project. To leverage this work, IDEA’s Usage Search function helps users quickly
determine the functionality of any selected class, method, field, or variable in a project. Users simply
click on the item they want to search, and IDEA will show all usages of that item in an entire project in an
easy to read and navigate usages result tree.

As shown in figure Searching for Usages 1.1, any item in a project can be searched in order to find out
where that item is being used.

14



15 Epuhlic: class initiationClass extends JPanel {
16 = public static woid main(Scring[] args) |
i; int mumberoftrainsperhour; @hFind Usages il
13 int mumberofferriesperhour’  gianie numberofplanesperhour
z0
Options
21 mmheroftrainsperhour = 5; B
zZe mmberofplanesperhour = 157 []:5kip results tab with one usage:
23 mawberofferriesperhour = 2;
24 [ open in new tab
25 —
Z6 TPanel pane = mew JPanel(); | o Find || Cancel || el
27 JButton okButton = new JButt Searchl'ngﬁ)r Usages 1.1

The project field “numberofplanesperhour” is being searched.

As noted above, all results are viewable in an easy to navigate tree panel as shown in figure Searching for
Usages 1.2.

Te 15 gpuhlic class initiationClass extends JPanel |
16 E! public static woid nmain(String[] args) |
17 int mumberoftrainsperhour;
1& b b A mberofplanesperhoury

13 int nuwmberofferriesperhour;

an E

v
w

Y numhberofplanesperhourint
= Found usages { 2 usages in 1 file )
Bl @3 =default= [ /n CAMDWSPs\se ) (2 wsages In 1 fife )
= CF initiationClass (2 wsages)
EF e maindStringl) ¢ 2 vsages)
40?(22, 4 numberofplanesperhour = 15;§

®E ¢ D X

B - v

+2 (32, 39) if (humberofferriesperhour == humberofplanesperhour) {

Searching for Usages 1.2
Navigational tree with results

When a searched result is selected in the navigational tree, the caret is transported to the actual item
location in the source code with a simple double-click, as shown in figure Searching for Usages 1.3.

32 if (numberofferriesperhour >= iqumherofplanesperhourj 1
33 Systen.out.println("We 're a sea-sick nation..."):
34 1 else
5 ]
b = |E Variable
b4 % ¥ numberofplanesperhourint
= Found usages { 2 usages in 1file )
= = 33 =defaults ( in CAMBSSPa\sre ) (2 Waages in 1 file)
+ |G =S initigtionClass (2 Yaages)
% ¥ = me mainStingldd ¢ 2 vsades )
@ &] -'(,‘.(22, 9y humhberofplanesperhour = 15; .
E +24(32,39) if (numberofferriesperhour == numberofplanesperhour) |
Searching for Usages 1.3

Navigational tree item location returned to source code

15



In addition to this general usage search, IDEA also allows users to search for specific element types by
employing a rich set of search options and filters. This usage search feature will not only search code
within the immediate editor window, but you can also enable it to search entire packages and projects.

Code Layout Manager

If you have ever been involved in a project with multiple developers and found yourself reading the code
of somebody else, you know that it can appear at times as a foreign language you have yet to learn. If this
is the case, or you are the guilty one who writes illegible code for your colleagues, you no longer have to
fear. IDEA’s Code Layout Manager tool is perfect for creating, optimizing, controlling, and directing a
uniform approach to code development layout.

18 int nu rriespet. Jib trainsperhour = 5; numberofplanesperhour = 15;

2l 1 L [ 1Eutton = new JButton('Cancel"):
22 JE 1 ignore g! 1 {"Ignore" )

23 if (nv er our = nuuh E thour) |

24 ; 5 'We're a sea-sick nation.

25 } .out.println(numberoftrainsperhour) ;

27 - public woid rateButton() !
28 Button trafficType = new

; public woid actionPerformed|ictionE ctionEwent) {
31 F/To change body of implemented methods use Options | File Templates.

Code Layout Manager 1.1
Select the block of code you want to format

Utilizing this powerful feature is initiated with the touch of a key. As shown in figure Code Layout
Manager 1.1, you only have to highlight a block of code you wish to format and then select Ctrl + Alt +
L (or from the menu Tools | Reformat Code). Depending on your layout preference, the code is
automatically reorganized as shown in figure Code Layout Manager 1.2.

14 épuhlil: class initiationClass extends JPanel |

15 (—j public static woid naini(String[] args) |

16 int numbheroftrainsperhonr:

17 int numbercfplanesperhour;

18 int numberofferriesperhour;

19 nunberoftrainsperhour = 5;

20 rmmberofplanesperhour = 157

21 rmumberofferriesperhour = Z;

22 JPanel pane = new JPaneli);

23 JButton okButton = new JEutton("0K"):

24 JEutton cancelButton = mew JEutton("Cancel");

Z5 JEutton ignoreButton = mew JEutton("Ignore'):

268 if [numbercfferriesperhour >= numberofplanesperhour) |
27 Systen. ouk.princln("We're a sea-sick natiom...");
28 I else

2e Systen. onk.princln (numberoftrainsperhour)

3 8

L

i@ o public woid rateButton() {

33 JEutton trafficType = new JButton():

34 6 trafficType. addictionlistener (new Actionlistener() |
55 @f 6 public void actionPerformedictionEvent actionEwvent) { Code Layout Manager 1.2

Code after IDEA’s Reformat Code option has been used

16



In addition to highlighting individual blocks of code, the code layout feature also allows you to format
entire classes or even entire projects all at the stroke of a key. If you are a project manager, you can even
export your particular style scheme preference to everyone in your team via email.

Optimize Imports

An additional tool for tidying up code in IDEA is the Optimize Imports feature. The optimize imports
function searches for and removes redundant and unused imports that have a tendency to turn readable
code into an eyesore.

As shown in figure Optimize Imports 1.1, there are three grayed-out imports that are not currently being
used by the open class (they may have been used, but are no longer needed). Simply select the Optimize
Imports function (menu Tools | Optimize Imports or Ctrl + Alt + O) and these imports will be safely
removed as shown in figure Optimize Imports 1.2.

éimpurt Jawvax . swing. ¥ ;
import Jjava.awt.®:
Climport java.io.®;

public cla=ss Dpkimizelmpnrts !

L o S T Y o (Y SN o

= public void sortBvFirstName () {
10 Entrvy first:

11 Entry second:

12 boolean swapped = true ;

Optimize Imports 1.1

Three grayed out imports to be removed

public class Dpi:imizelmpnrts )

= public void sortEvFirstName(){
Entry first:

Entry second;

10 bhoolean swapped = true :

Wooh -1 o s

Optimize Imports 1.2

Three grayed out imports have been removed

Intention Actions

Sometimes our greatest ideas suddenly hit us in the head like a ton of bricks, and when we find ourselves
in such creative interludes, we do not want to be bothered with little things. When it comes to coding,
IDEA’s ability to create classes, methods, fields, and local variables from unknown usages is the work
horse you need for taking care of the little things, so you do not have to be bothered when re-structuring,
re-designing, or just adding new goodies into your source code.

Enter the Light Bulb: The crafty little icon that magically appears throughout the development process
to give you a helping hand.

17



For example, as shown in figure Intention Actions 1.1, IDEA allows you to first implement an unknown
usage, and then after the usage has been implemented, the light bulb studiously alerts you to the code’s
missing constructs.

13 épuhlic: clas=s Server extends Httplerwlet {

14 '3 woid processEecquest (Redquest recquest, int flags) !
15 allocateResources() ;

15

17 »,.',J u:rEateAndStaktPrDcessingIhread(req‘uest, flags):;
18 .. e

19 ¥ Create Method 'createsndStartProcessingThread'

<t ¥ Rename Reference

21

22 clientCall():

3 EI ; Intention Actions 1.1

Unknown usage import correction dialog

As the unknown usage popup appears, IDEA offers a variety of import options depending on current code
construction. After one of the various selections has been chosen (in this example, to create a new
method), IDEA intelligently creates and then places the selection into an appropriate position within the
source code editor as shown in figure Intention Actions 1.2.

13 gpuhlic class Server extends HttpSerwlet |

14 l5| roid processREecquest [(Request request, int £lags) |

15 allocateResources|) ;

16

17 createbdnditartProcessingThread(request, flags):

1s

19 clientCall():

20 A j

21

za = private widl createbnditartProcessingThread (Fequest request, int f£lags) ! . .
: Intention Actions 1.2

Selected item imported into source code

After the selection has been imported, you can then continue to edit this newly imported selection or you
can return back to your previous place in the source code editor by selecting Ctrl + Shift + Backspace
and continue working.

Not only will IDEA create methods for you, it will also implement methods into your code found in
existing packages where these methods have previously been implemented. As shown in figure Intention
Actions 1.3, a known Java identifier has been entered into the editor, and IDEA will suggest that you
implement this keyword’s corresponding items (in this case, the MouseListener methods).

import java.awt,event.Mouselistener;

@c class FBazicCodeConpletion extend=s ClassLoader implements Mouselistener!

¥ Implement Methods

L o S B VN B R 4

¥ Make ‘BasicCodeCompletion' abstract

Intention Actions 1.3

18



After the selection has been chosen, in this case the Implement Methods selection for MouseListener,
IDEA will prompt the user as shown in figure Intention Actions 1.4 to select the methods from the
MouseListener package they would like to implement. IDEA allows you to implement all of the methods
from the package, or just individual methods by highlighting individual selections and then selecting the
OK button.

[SFE

L ]

@iﬁelect Methods ko Implement x|

i
s

-
=

F

El

I’ java.awk.event.Mouselistener

m

m

I

m

m

(]

T T T T

mouseClicked!e: MouseEvent):void

mouseEnteredie:MouseEvent): void

mouseExited{e;MouseEvent): void

mousePressedle:MouseEvent): void

mouseReleased{ e MouseEvent) void

[_] Copy JawaDoc | o I | Zancel

Intention Actions 1.4

After the methods in the package have been chosen, and the OK button selected, IDEA will automatically
import and implement the methods into your class as shown in figure Intention Actions 1.5.

a
4

5

&

7

&

A
et o
1 f
1z
13 @t o
14 O
15
16 &t o
17 &
S
wets
20 @

21

G;!J'erurt java.awt. event.Mouselistener;
@:i:murt jawa. awt, event. MouseEwvent:

Epuhlic class BasicCodeCoumpletion extends ClassLoader implements Mouselistener!
@t Eﬂ public woid mouseClicked (MouseEvent e)
&)

public void mouseEntered (MouseEvent e)] |

4

public void nouseExited (MouseEwvent e) |

public void mousePressed (MouseEvent e) |

public void nouseReleased (MouseEvent e)

]

Opening Class by its Short Name

Intention Actions 1.5

When you are working with large projects that contain a large number of classes, finding a specific class
can waste a lot of valuable of time. To ensure that you spend your valuable time actually coding, IDEA
lets you open any class by its short name, eliminating the need to perform time consuming searches for a
particular class.

Simply select Ctrl + N, and once you start to enter the first letter of the desired class, IDEA will
dynamically begin to limit your possible selections as shown in figure OCSN [.1. Once your choice has
been selected, the desired class will be viewable in the source code editor panel.

19



Enter class name: { [ Include non-project classes )

i

]

T importhssistant (in )
T initiationClass (in

T insideOut [(in

£ {3 {5

T IQtester [in |
OCSN 1.1

Class search by short name

Keymapping

This IDEA feature allows you to ergonomically adjust how the IDE’s functions are invoked. As you can
see in figure Keymapping 1.1, shortcuts to most IDEA functions appear on the right side of menu items
located under main menu categories.

Refactor  Build
Crl+F
Cirl+R
Find Mext Fa
Find Previous Shift+F3
Find YWaord at Caret Ctrl+F3
Incremental Search Alt+F3
Find Usages... Alt+FT
Find Usages in File... Cirl+F YT
Highlight LIsages in File Cirl+Shift+F 7
Find in Path... Crl+Shift+F
Replace in Path... Ctrl+Shift+ R Keymapping 1.1

IDEA comes with a default set of shortcuts ready to use immediately after software installation. However,
this default setup can be replaced with your own customized mapped selections. As shown in figure
Keymapping 1.2, you can access the keymap index and change the default keymap selections and replace
them with your own customized versions. You may also create additional keymap profiles, in case you
prefer to have more than one set or more than one person uses the same computer. You can also save
mapped configuration settings and export them to other machines running IDEA.

20



Keymap Settings

Keymap name:

Action | Shorcuts |
= 4 Refactor |

Rename... & Shift+F&

Change Method Signature. .. & Cirl+FB

Make Method Static...

Mave... & F&

Capy... i Fa

Clone... & Shift+F5

Safe Delete... ) alt+Delete

Extract Methaod... ) Ctrl+ Al

Introduce Yariahle. . ) CHrl+ Aty

Introduce Field... (B Ctrl+Alt+F

Introduce Constant... B Ctri+alt+C |

Introdiire Parametar Fh vl slte P l
Shortcuts:
) Cirl+FB

Action Description
Change signature of the selected method and correct all references

Keymapping 1.2

Navigation

As with any project, knowing what your project’s internal components consist of is important. More
importantly however, is how fast you can find them to make changes or add improvements. Not only does
IDEA allow you to quickly open a class by its short name, but you can navigate to any file in a project by
its short name as shown in figure Navigation 1.1, allowing you to quickly find declarations and type
declarations, implementations, and super methods quickly.

Enter file name: [ [ Include java files )

i

J| importhssistant. jawa (C:4J1ib\J5Ps%=rc)

a_l" index.jsp (C:NJlib\J3P3%src)

] initiationClass. jawa (C:4\JlibyJ3FsYsrc)
il insideOut.jawa (C:%J1ib\J5P=\=rc)

[l 1Qtester.java (C:yJlibyI3FaYysrc)

Navigation 1.1

In addition, IDEA allows you to quickly jump to the last change made in a file (Ctrl + Shift +
Backspace) and even view the list of previously viewed files as shown in figure Navigation 1.2.

Recent Files
EI nesyG L form
il initiationClass java
Ll 1otester java
il inside0ut java

lo1| Focuslistener.class Navigation 1.2

21



Another feature to help keep you organized and manage your code efficiently is the Bookmark and ToDo
functions. The Bookmark function allows you to mark lines of code in your project, and then allows you
to quickly navigate back to those locations. The ToDo function allows you to see your ToDo comments
in your source code in an easy to read tree-view panel as shown in figure Navigation 1.3. You can then
navigate to the actual places in the source code by clicking on the specific Todo in the tree-panel.

= Faund & tado-items in & files
B & ste (3 iterns Tn 3 flies )
(2] buildxml 7 ster )
= ] importAssistantjava (1 tem)
U7, 51 # ftodo Rename the button tifes to reflect customer:
= 4] initiationClass.java (1 fem)
(449,171 # ibtodo Revok focusl ost method and replace with focusGained
= ] insideCutjava [ 1 iem)
(11, 9.4 ibtodo Finish class and e into main system
= Wl 10testerjava (7 lem)
(10, 9 # ibtodo Create data variabies to detertine standard mean

Navigation 1.3

Lastly, IDEA also enables you to quickly browse class, interface, and method hierarchies and then
transport you to these locations in the source code as shown in figure Navigation 1.4.

H @ uj |
ML @ main(Stingvoid
M @ rateButton)void
m T travelButton:void

Navigation 1.4

Code Inspection

Those who pride themselves on producing meticulously clean code are always surprised at what IDEA’s
code inspection feature is able to find. This feature empowers you with the ability to analyze your source
code for irregularities and informs you when your code’s design logic is “fuzzy.” It highlights and
navigates you to unassociated, unused, and redundant classes, interfaces, methods, and fields.

In addition to this design verification function, the Code Inspection feature is equipped with a powerful
code implementation validation tool that reports where run-time exceptions might arise based upon certain
conditions, varying from whether or not certain expressions have their execution results used or if
execution flow never reaches certain statements.

To get a taste of how powerful and useful the code inspection feature is, take notice of the source code in

figure Code Inspection 1.1. On line 27 we have commented out and noted a deliberate error we have
thrown in the source code.

22



19 E} private class Nvlevlistenr extends Kevidapter |

z0 8t o public void keyTyped (KeyEvent el {

21 int keyCode = e.getKEeyCode():

22

23 if (keyCode == EeyEvent.UHE Fi] {

24 showHelp () :

25 } else if (keyCode == HeyEwvent. DK F2] |

26 showClients():

27 } else if (keyCode == KeyEvent.UK F2) { / Should be F3
28 showDhevices():

29 } else if (keyCode == KeyEvent. VK F4) {

30

. ' Code Inspection 1.1

Example source code with conditional error

Now, we invoke the Code Inspection control panel and select our desired analyze and search criteria as
shown in figure Code Inspection 1.2, and then run the Code Inspection tool.

Inspections
vl Unused declaratian
= [vl Declaration Redundancy
[C] Declaration access can he weaker

[ Declaration can have static modifier
[ Declaration can have final modifier
] Unused method parameters
[ Actual method parameter is the same constant
[] Unused method return value
[¥] method returns the same value
[¥l Empty method
[¥l Redundant throwes clause

[ Declaration has javados problems

[ Deprecated APl usage

] equals() and hashCode() not paired

[] EJE Errars &Warnings

= [¥] Local Code Analysis

[¥l Constant conditions & exceptions
[¥l Unused assignment
[¥l Redundant type cast
[[] Local variable or parameter can be final

Code Inspection 1.2

Code Inspection Analyze and Search criteria option panel

If a user were to compile the error-riddled source code just previously mentioned, a compiler would not
throw an exception because the error it is not a Java error. You could deploy this application at this point
and it would work, but not the way it was intended. A quality assurance team might not find this error
immediately, and once they did find it, they would send it back to development and the developer would
have to spend more time debugging the application, eventually fixing it after a lot of wasted (and costly)
time.

This simple source code example could be easily debugged manually without much fanfare; however, in a
project with hundreds or even thousands of classes, interfaces, methods, and fields, it would be almost
unimaginable to search for these errors manually. You just simply invoke the code inspection tool and let
IDEA do this job for you.

23



+» Ingpection - Ingpection Resulte

¥ |2 ) JsPsipr Name:
& 2 Unused declaration public method void keyTyped(KeyEvent e)
nal
" = Luc;! Code Analysis . . Location:
B & Constantconditions & exceptions MykKeyListenr (default package listenerExample)
@ 5 B default package
m T EIistenerExample.MyKeyListenr.keyTyped(KeyEvem) i1 item)? Pruhlem_ !_?VHDIJSiS! )
’ Condition keyCode == KeyEvent.WK F2 at line 27
g is always false.
2
Code Inspection 1.3

Code Inspection Output Control Pane for Constant Conditions and NPE analysis

Once the code inspection function has completed its various selected analyses and verifications, the code
inspection’s results will be viewable in an easy to read tree-like navigation window in an output control
panel as shown above in figure Code Inspection 1.3. As noted previously, the Code Inspection function
will not only perform the above mentioned inspection as noted in the example, but a multitude of various
analyses that will dramatically reduce your chances of introducing errors into your projects. Not to
mention that it will help you streamline your source code by ridding it of left-over development chaff.

Refactoring

What is Refactoring?

One of the newer staples to take hold in the world of development and push the paradigm of conventional
programming has been the process of refactoring. What is refactoring? One industry refactoring maven,
Martin Fowler, describes refactoring as:

“The process of changing a software system in such a way that it does not alter the external
behavior of the code, yet improves its internal structure. It’s a disciplined way to clean up code
that minimizes the chances of introducing bugs.” 1

This of course is the technical definition of a process in theory; however in practice this art form can be
extremely time consuming and difficult to perform when attempted manually. In addition, if one is
actually crazy enough to try complicated refactorings manually, they inherit the risk of crippling working
systems and turning them into unstable and non-functional gobs of code. This is why IDEA comes fully
equipped with the most powerful refactoring tools available in the market. Refactoring processes such as
Renaming, Extract Method, Change Method Signature, Make Method Static, Extract Interface, Introduce
Constant, Move, and many more are bundled with IDEA for more than 25 different refactoring tools in
total.

This section of the overview will briefly introduce some of the 25 plus refactoring tools provided with
IDEA, with the intention of giving you a better understanding of when and why they are used and to see
how IDEA makes invoking them as easy as pressing a key.

Renaming

One of the more common yet most used and useful refactoring tools integrated into IDEA 1is the
Renaming refactoring. Renaming allows you to safely change the name of any package, class, method,
field or variable in a specific file or desired project.

1
Martin Fowler, Refactoring: Improving the Design of Existing Code, ISBN # 0201485672 (Addison-Wesley).

24



What would be the reason for doing this? Simple: to clean your code up. When naming methods, for
example, a good programmer will reveal the purpose of that method by its name. As is shown in figure

Renaming 1.1, the name refers to a general function.

34 B public woid jg-ie=:kasge] | |
35 JEButton trafficType = mew JEutton():

Renaming 1.1

In figure Renaming 1.2, the method has been renamed to a label more fitting to its specific function.

34 E,l ORI lCal culatetotal trave lratingEutton Wl
35 JEutton trafficType = new JEutton();

{

Renaming 1.2

During the renaming process, this tool automatically finds and corrects all references to a specific element
(in both the working class and the rest of the entire project). As figure Renaming 1.3 shows, an easy to
read prompt will ask you to verify your changes — either by each individual instance or entire project.

Textarea textareal;

JEutton m;

JEutton button2;

=] public FourthfQuarter(3tring report) |

Super (report);

JPanel pane = [(JPanel)
getContentPane ()

button = new JEutton("Print Out Sale=s Report"):
button.addictionlistener (thi=s) ;

2 Find - Refactoring preview

¥l [=- Field to be renamed to calculate
f ' button: JButkon of class FourthQuarter
Occurrences found in comments, strings and non-java files { Mot found }

= References in code to field button { 2 references in 1 file )

i E Flla [4]

® I & <
&

= i FourthQuarter.java { 2 references )
{29, 9 butbon = new JButton("Prink Ouk Sales Report™);
+ (30, 9 button, addActionListener(this);

EF [@1 <default> { in C!|Decuments and Setbings |David |[Ideabrojects | TEsHng|sve 3 { Z references in 1 File )

Lo Refactor || Cancel

] Refactoring preview |

Renaming 1.3

Once you have determined the appropriate items to refactor, and you have refactored them by selecting the
Do Refactor button, the new results from the refactoring process are shown back in the editor as shown in

figure Renaming 1.4.

25



Texthirea textareal:;

JButton

JButton button?;

] public FourthQuarter (3tring report) |

SUper (report) ;

JPanel pane = [JPanel)
getContentPane () ;

calculate = mnew JButton("Print Out Sales Report"):
calculate.addictionlistener (this) ;

Renaming 1.4

Move

Along with the Rename refactoring, IDEA’s Move refactoring tool is another straight forward yet highly
powerful and widely used refactoring process that allows you to correct, improve, or transfer misplaced
responsibilities in source code without a lot of hassle. It also enables you to quickly move methods or
static fields from one class into another, and in addition, you can also move entire classes or even entire
packages into other packages all by invoking IDEA’s Move function. This automated process eliminates
any chance of introducing bugs into your code when moving items from place to place.

For example in figure Move 1.1, the Java class file (4ddressBook) shown in the project view can be easily
moved into a new location (or a previously existing one) as shown in the To package: field. All
references to this class within the entire project will be changed to accommodate such change.

= e =) mmmmﬂmmm
1a : public SortabhleVector entrylist:
= & addressbaok
; " 11 Entry current;
=@ - 1z JLabel display;
E ey o Data.ﬁ.ccess 13 int pos = 0;
: jmty = fal=e;
M x
@J /= —I werwEntry = false:
Move class addressbook, AddressBook R

d laztHame, firstHame, Iu
reviousB, nextB:

To package: |newaddressbook| " |

[¥] Search in camments and strings [¥] Search in non-java files ST e e e

"Address Book" ) ;
E itentPane | ) . setLayout (new,|

[¥] Preview usages to be changed | O | ‘ Cancel | ‘ Help ation(l00,0) :
kground (Color. LightGray)
- pu] encryList = Databccess. loadl) :
111 Jnit 26 if (entrylist == null)! Move 1.1

Once the move process has been completed, you will see the previously mentioned Java class file has now

been moved from the addressbook package into a new package called newaddressbook as shown in figure
Move 1.2.

26



B [a

=l E B

a. Sic

addressbook,

C' o Datafccess)
&) o DataTokerizer
C' o Enkey

C! o Sortablevector
newaddressbook,

C' & AccessingDE

G

o AddressBook,

Move 1.2

As noted previously, in addition to moving classes between packages, you can move members of a class
into a new class. As shown in figure Move 1.3, simply point the caret to the member you wish to move
from the class AddressBook, in this case saveToMem() on line 255, and invoke the Move refactoring (you
can right-click your mouse and select Refactor | Move or press F6 on the keyboard).

£55
256
257
£58
259
260
2681

B

static woid saveTuE-Iem[AddressBun}:. addrezzEook, Entry currentl,
int counter=0;:
currentl. fHame firstNamel.getText() ;
currentl.1Hame = lastlamel.getText():
currentl. hPhone homePhonel. getText(]) :
currentl.mPhone wobilePhonel. getText()
currentl. fPhone faxPhonel. getText () :

Move 1.3

Once the refactoring has been started, you will be shown a control dialog informing you of your selection,
and more importantly, a list of other members that should be moved along with your initial member as
shown in figure Move 1.4.

ﬂ

Move members Froam:
addressbook, AddressBook

To (Fully qualified name):

|newaddressbmk.BDDkWrapper || |

Members to be moved (skatic only) Wisibility
| Member | @ fsis
[ (o setEntry(addressBook: AddressBook, emptyl:boolean, previousBl:2 -
[ my o saveToFietaddressBook:AddressBook, entrylistl:Sortablevector)se ) Private
[¥] (i o savelewEntryladdressBook: AddressBook, entryListl:SortableVecte | | ) Package lacal
[¥] (o saveToMem{addressBook: AddressBook, currentl:Entry, Firsthame1 (") Protected
[ imi o saveEvent{addressBook: AddressBook, entrylistl:Sorkableveckor):y =
[] ‘mk Ta main{args: string[ Ti:void 1 Public
[¥] Preview usages to be changed | oK I | cancel | ‘ Help

Move 1.4

27



After the appropriate desired member selections have been made, and the Move refactoring has been
completed (including your verification of the members to be moved), a new class will then be made in the

newly mentioned location with your previously selected members to be moved as shown in figure Move
1.5.

17 public class BookWrapper |

15 int field;

19

20 =] static void saveNewEntrvy(iddressBook addressEBook,

2l entryLlistl. addElenent (currentl) ;

22 posl = entrylistl.size()-1: Move 1.5

You can also move inner classes and make them outer classes with the Move refactoring. As shown in
Move 1.6, the Move dialogue appears after the caret has been placed on the desired inner class to move (in
this case class RequestProcessor on line 8) and the Move refactoring has been invoked.

L) public class Jerver {

5 L:_| _r.f:é:(-

(=) # Thresd processing respohses o redquest

7 | Eap

g = class RequestProcessor implements Furmahle
9 private Fequest myBegquest:

10
11 g @?Muve Inner to Upper Level ﬂ

1z Class name:

13 | |RequestF‘rncessnr| |
14 | .

15 t1 [#] Pass outer class' inskance as a parameter

17 |_ Parameter name:

18 |server |
19 =

>0 [ [ Preview usages to be changed o | | cancel | | Help |
21

Move 1.6

After the Move refactoring has been completed, a new class is born as shown in figure Move 1.7.

13 class i%equestPru:ucessnr implements Funnable |

14 private Fedquest myHeguest:

15 private Server server:

16

17 = public RequestProcessor(Server server, Request request) |
15 this.server = Server;

19 myBegquest = recuest;

20 1

Move 1.7

28



Introduce Variable

Most of us eventually find ourselves in a situation where our code begins to grow into an untamed beast,
and as it becomes more and more robust, it become difficult to understand. When this occurs, IDEA
allows you to initiate another cool refactoring function called Introduce Variable (also called Introduce
Explaining Variable). This function will simplify complicated expressions (or any part of one) by
transforming them into a temporary variable with a name that expresses its function.

For example, figure Variable 1.1 is your typical run of the mill expression.

10 public class StringUtil {

11 [—j public static String toPlural (3tring word) {

12 if (word.length() == 0) return word;

13

14 if (word.chardt{word. lengthi(] - 1) == 'x' || word.chardt(word. length({] - 1) == 's'] {
15 return word + "es":

16 1 else if (word.chardt(word. letgth()l - 1] == 'y'] {

17 return word.substring(0, word.length{) - 1) + "ies";

15 1 else |

14 return word + 'S'.:I

20 1

| } Variable 1.1

You can see that this expression is a little messy; however, if you do not think so then watch how IDEA
makes it even clearer. As shown in figure Variable 1.2, the refactoring Introduce Variable is invoked on
the expression word.charAt(word.length() — 1) .

10 public class StringUcil |

11 E—',| public static String toPlural (Stcring word) §

12 if(ward. length() == 0] return word;

13

14 1 f s RN A BN RS T SRR == 'x' || word.chardt(word.lengthi) - 1) == 's'} {
15 return word + "es":

15 Vv else if (word.chardtiword.lengthi) - 1) == '¥'] {

17 return word.substking (0, word. length() - 11 + "ies";
15 1 else |

14 return word + 's':

20 1

2l =] i

Variable 1.2

In figure Variable 1.3, the above mentioned complicated expression (and all of its occurrences) has now
been changed into the expression lastChar.

29



10 public class StringlTtil

11 =] public static String toPlural (String word)

12 if (word. length(] == 0] return word:

13

14 char laztChar = word.charat(word, lengthi) - 1):
15 ifilastEharI== 'x' || lastChar == 's') {

16 return word 4+ "es":

17 } else if (lastChar == 'y') {

1& return word.substring(0, word.length() - 11 + "ies":
14a I else !

a0 return word + 's';

2l i

22 @ 1

Variable 1.3

Then, as a closer, we invoke introduce variable once again, this time on the expression word.length() — 1

as shown in figure Variable 1.4.

10 public class 3tringltil |

11 =] public =static 5tring toPlural (3tring word)

12 if{word. lengthi() == 0) return word:

13

14 int lastCharIndex = word.length() - 1;

15 char lastChar = word.chardt(lastCharIndex) ;
1& if(lastChar == 'x' || lastChar == 's'] {

17 return word + "es";

15 } elze 1if (lastChar == '¥')] {

13 return word.substring(0, lastEharIndexh + "ies":
20 I else |

21 return word + 's';

22 b

23 = i

Variable 1.4

Now, go back and look at figure Variable 1.1 and compare it to our refactored expression in figure
Variable 1.4. The former is a good hard numbered mathematical expression; the latter, a nice and easy to
read word story problem. If you were working on a much larger project, and needed to find out what this
expression did quickly, no doubt it would be the story problem and not the numbers which informed you

the quickest. Not to mention, your code simply looks better.

Extract Interface / Superclass

When the time comes to radically optimize both the code’s readability and its design, Extract Interface /
Superclass are the perfect refactorings to invoke. IDEA allows you to extract from classes or public
interfaces public methods or static final fields into a new, single public interface or superclass that can be
easily shared between multiple classes. This procedure removes the need to type repetitive code or use
multiple implementations of the same object. As shown in figure Extract I /S 1.1, simply point the caret
to a class or interface you wish to bundle into a new interface or superclass, and then select Refactor |

Extract Interface / Extract Superclass from the main menu.

30



9 class bLddrezsBook extends JFrame :i.lmlegmnts ActionListener{

10 public SortableVector entrylist:!
11 Entry current;
12 JLabel display:

Extract1/S 1.1

Figure Extract I/ S 1.2 shows that once the refactoring procedure has been called, IDEA launches a popup
console with various options allowing you to package the chosen interface or class, including their
relevant methods and other associated objects, into a new interface.

@hEHtract Superclass x|

Extract superclass from:
addresshook. AddressEBook

Superclass name:

|5uper£\ddressBook |
Package:
|addressbuok " |
Members ko Form Superclass Javaloc For abstracts
[ Mermber [Make abstract W Asis

[¥] (m) o saveToFilel): vaid [ ) Copy

[¥] (m) o saveMewEntry(void [ -

[w] mi o saveToMem(): void ] () Mave

[¥] (m) o showErrarMessagelerrar: Skring)void [ |

[ m) o niewEvent:void -

| (0.4 | | Cancel | | Help

Extract1/S 1.2

Once the refactoring procedure has been completed, IDEA will then prompt you for your permission to
search the usages of the parent class to replace old usages with new and improved ones as shown in figure
Extract Interface 1.3. Like other refactorings in IDEA, a tree-view will be shown allowing you to approve
your individual selections before making any changes final.

23 O new Windowhdapter() {

24 &t ¢ i S ing (MindowEvent
a5 E‘ @Mnalrze and Replace Usages 5'

26 & Class SuperaddressBook has been successfully created.

27 [ I Ak this stage, IDEA can analyze usages of AddressBoak

28 * | and replace them with usages of the superclass where possible.

20 Do wou want ko proceed?

a0 [¥] Preview usages ta be changed | !"..1‘35 | | No |

31

32 TMerm entrysMenu = new JHemu("Entrys"):

33 entryslenu. setMnenonic (KeyEvent. VK E) ; Extract Interface 1.3

An alternative to using Extract Interface is, depending on your situation of course, to invoke the
refactoring function Extract Superclass. This function works in a similar fashion: You notice that you
have two classes that basically contain the same code, and you are tired of fixing the same bugs twice or
improving the code in more than two places (and sometimes in 100s of places), and you want to eliminate
this nuisance. IDEA will help you by automating the process of removing the common features used by
varying classes, and package the contents into one shareable superclass.

31



Extract Method

When one is faced with a block of characters that reads more like encryption than actual code, those using
IDEA know they are fortunate to have the power to bring their coding universe back into order. The
Extract Method refactoring tool is one such enforcer of order that lets you extract code from one of these
chaotic conglomerates of code and creates for you a new, unscathed and pristine method that is easily
identifiable. In laymen terms, this means you can take a large method, and divide it up into multiple
methods that are well defined and clearly marked — and — they are easily usable by other methods, because
they are well defined.

For example, as shown in figure Extract Method 1.1, the bookletToRename method and its contents are a
large cluttered mess. To fix this, just highlight the code that you wish to extract as a new, cleaner method,
and invoke the Extract Method refactoring tool.

12 public class BookletLibrary |
13 Arraylist myBooklets:
14
15 -] roid renaneEntry (3tring oldName, 3tring newlame) {
la
17 W Eooklet hDDklEtTDREHEmE = null;
15 for (int i = 0; i < myBooklet=z.size(); i++) {
149 Eooklet hooklet = (Booklet) myBooklet=s.getii):
z0 if(booklet.getBookletNane()l.equals(oldNane) ) !
21 bookletToRename = hooklet;
a2 break;
23 1
24 !
Extract Method 1.1

Extract cleaner and well defined methods from cluttered methods

As shown in figure Extract Method 1.2, a new method has been created with the bulk of the messy content
being referenced somewhere else. Now the resulting new method is easily identifiable and easily
referenced by other methods and classes.

12 public clas=s BookletLibrary !

13 Arravlist myBooklet=s:

14

15 =] roid renameEntry(String oldName, 5String newuMName) |

la

17 Booklet bookletToRenane = Ejnnkletﬂewﬂethndinldﬂamej:

18 Extract Method 1.2
Inline Method

The refactoring tool Inline Method is the opposite of Extract Method. Then why would you want to use
it, especially after the fact that we just told you how great the extract method tool was? Simple:
Sometimes you run into too many delegation indirections that clutter code and are simply confusing, so
using inline method removes needless delegation and creates a responsible method. As shown in figure
Inline Method 1.1, you see that there is some unneeded delegation in the getEnteredName method.

32



36d El public 3tring gEtJ:EnteredI-IamEH{

365 return myHameField. getText () ;

366 [ }

367

368 = public 3tring getEntryName () !

369 return getEnterediane();

370 EI } Inline Method 1.1

Just move the caret to the method you want to inline, in this case the getEnteredName method, and invoke
the inline method tool to remove the indirection chaff.

363 :
364 EJ public String get.E!qtryﬂame (]
365 return mytlameField. getText(] ;
366 [ 1
: Inline Method 1.2

As shown in figure Inline Method 1.2, after the inline refactoring process has been completed, the needless
indirection has been removed, the code has been streamlined, and no bugs have been introduced.

Just to note, a good idea to keep in mind is that you can use inline method as a precursor to utilizing the
extract method function. What?!? Simply stated, sometimes there are methods that are simply factored in
a sloppy manner, and the quickest way to fix them is to first inline the sloppy code into one tidy method,
and then to initiate extract method on this new and improved block of code to create finely tuned smaller
methods that are much more friendly to share and easily identified.

Encapsulate Field

If you enjoyed playing hide-and-go-seek when you were a kid, then you are going to love the refactoring
tool Encapsulate Field. This refactoring is utilized best when you want to make data in one object

private and inaccessible from other public objects. In other words, you hide the contents of one object
from other objects that may attempt to alter the former’s behavior. As shown in figure Encapsulate Field
1.1, you see that you simply point the caret at a targeted public field, select encapsulate field, and you are
prompted with a relevant control console. In figure Encapsulate Field 1.2, once Encapsulate Field has
been invoked, it helps you create the appropriate getter and setter methods which hide the initial content of
any selected field.

1z bhoolean empty = false:;
13 boolean nevEntry = false:
14 ITextirea nbtefrea;
15 public JTextField lastHame, [irstHame,
1& JEutton previousB, nextB:
Encapsulate Field 1.1

Select the public field you wish to encapsulate

33



@hEncapsulate Fields - addressbook.AddressBe x|

Fields to Encapsulate
Field | Getter | Setker |

nokedrea; 1T, .. getMote, ., setMotefrea

=)
O
O
'h -

Encapsulate Cpkions

o [

[¥] Get access [¥] Use accessars even when figld is accessible

[¥] Set access

Encapsulated Fields' Wisibilicy Accessors’ Yisibiliby
W) Private i#) Public
i) Package lacal i) Protected
i) Protected i) Package local
i) Asis i Private
[¥] Preview usages ko be changed | oK | | Cancel | | Help

Encapsulate Field 1.2
IDEA has prompts you with an advanced multi-functional control
panel to personalize your refactoring selection

Change Method Signature

Change Method Signature is a refactoring that encompasses a multitude of options for making a number
of cosmetic and design changes to any desired method signature. Specifically, IDEA lets you perform the
following changes:

Change method name
Add parameter
Remove parameter
Reorder parameters
Change return type
Change parameter type

It is not our intention to cover these specific refactorings in greater detail in this overview, because by
their names alone, their functions are pretty obvious. Some of these above mentioned refactorings can be
read about in greater detail in Martin Fowler’s book on refactoring previously mentioned in the
Refactoring introduction page.

J2EE Support

Creating component based J2EE modules has become the de facto standard in today’s highly competitive,
rapidly changing and complex market of B2B, B2C, and B2E (Business-to-Everything else)! Picking the
right tools for development can, literally, make the difference between making a multi-million dollar
deadline and sinking a company into oblivion.

Whether you are a small developer or part of a large corporate development team, the success of any
project is defined, to a greater or lesser degree, by its relation to its completion schedule and budget.
Working with enterprise applications is no different. EJB, JSP, and Servlets are the bedrock of J2EE, with
XML and HTML acting as mortar. IDEA gives you the power to utilize, organize, develop, and launch this
compendium of technologies in an intelligent, fast, efficient, and timely fashion.

34



To ensure that all of your J2EE development needs are met, IDEA comes completely stocked with a vast
selection of robust and usable features, including:

Code Completion for JSP and XML

Syntax and Error Highlighting in JSP/ XML and EJB code JSP tag library support
XML DTD / Schema completion / validation support

EJB Setup / Create Integration Support, Code Assistance

EJB Refactoring support

Web Application Development

If you are a Java developer and have experience creating web based applications, then no doubt JSPs
(JavaServer Pages) have been an integral part of your development arsenal. Those who are yet to use
JSPs, here is a quick run down: JSPs are HTML pages with inserted Java code that allow web developers
and designers to quickly deploy and easily maintain dynamic and information-rich web content that is
platform and server independent.

JSPs are used to build interfaces to e-commerce back-ends, intranet based project management and
development tracking tools, and pretty much anything else that demands you utilize Java packages, a
HTML (or variant) based browser and database connections. Of course, this is a sophomoric and
simplistic description of the immense and diverse functional capabilities that JSPs possess; however the
premise should be quite clear: JSPs are invaluable to enterprise centered development tasks.

Having said this, if you are looking to utilize your limited time and resources to maximum efficiency, not
to mention code for future scalability, then IDEA is the ideal development tool to use for JSP
development. IDEA comes standard with JSP tag library and attribute code completions, code
refactorings, error highlighting, on-the-fly debugging, and even JSP deployment capabilities all from
within a single development environment.

IDEA’s JSP code completion features work in a similar fashion as its standard Java code completion
features. IDEA will automatically complete code when invoked to do so. For example, as shown in
figure JSP 1.1, once you start to code JSP tags, you simply invoke the code completion function —
selecting CTRL + Space — and a library of selections will appear.

3 jJava.util.List,

4 Java.util.Arraylist ™=

5 -{jsp:JN

o £ forward a|pctedCategory™ scope="application™ class=

7 £ getProperty o ="gelectedCateqory™ property="categqoryIld]

g A include g

a <> param ry" method="POST">-

10 <> params -

11 <ty

12 <td-Farent category: </ td- JSP 1.1

JSP attribute completion

Once the selected attribute has been chosen from the automated attribute list, IDEA will automatically
complete the JSP tag by filling in all necessary static data.

35



As shown in figure JSP 1.2, any part of a tag that allows multiple selections of data input, IDEA will
intelligently offer more attributes based upon project content to automatically complete this dynamic data.

3 java.util.List,
4q Java.util.ArrayList %>
5 =jsp:include page=”|’
& <jsp:useEean : il category tree.jsp [alplication™ class="4
7 =j=p:=zetPropel il edit article.jsp erty="categoryld”
2 edit category.jsp B
a <form name="ar o . e
1] edit fag.jsp
10 <tahle:> > £a Iist o j
11 <trs = et
12 «td:=Parent category: </ td> JSP 1.2

Dynamic tag attributes automatically completed

In addition to basic attribute completion, IDEA also enables developers to quickly add tag library
selections, including TEI tags at the stroke of a key, as shown in figure JSP 1.3.

12 <%@ taglib uri=""http://jakarta.apache.org/struts/tags-bean™ prefix="TaglLib3truts" %X
13

14 <TagLibStruts:|

15 £

1 <% <> define

17 1€ > header d{).equalzIgnoreCase ["GET™) ] {

15 £» inelude itle ("INTELLIJ Customer 3upport System: Ask Support™):

13 4> wessage w |[ler ("mem. 3sp™)

20 currentPage. setContent (" usersask form. 13p™) : JSP 1.3

XML Development

XML needs no introduction, or it shouldn’t anyway. If you have ever done any extensive programming in
Java, you have probably run into and used XML, if for nothing else to create Ant build files for faster
application deployment. For more extensive J2EE development XML is utilized for multiple purposes:
B2B (EDI, SOAP), Web service descriptors (WSDL), and even automated discovery and transaction
services (UDDI, UNSPSC, SIC, etc.).

Whatever your specific case may be, if you are going to be deploying Java applications that work in
conjunction with XML, IDEA comes equipped to help you create applications quicker and more
efficiently. How is this possible? Simple: Not only does IDEA’s editor know Java, it also enables you to
meet the demands of XML coding with its smart editing features (including automated error high-
lighting).

For example, IDEA allows you to quickly edit XML documents that support both DTD and Schema
validation. As shown in figure XML 1.1, IDEA can digest any given DTD’s specification and
automatically include these special attributes into the editor’s intelligent XML attribute completion
function.

36



59 <section i:-Intrudm:tiun{fsec:tiun}

&0 <hre
&l ¥ml: lang

B2

XML 1.1

DTD attribute validation tag

In figure XML 1.2, schema specifications, like DTDs, can be appropriated by IDEA’s editor for faster and
more accurate automated attribute-tag completion.

12 |
13
14 5
15 ¢
la
17
15 :
19 é < /x5 element

¥3:attributeGroup

rcomplexType
3:element

="login" type="xs:strimng" use="regquired" />
="'access rights" type="x=:decimal' use="required" />

I group

rimport

XML 1.2

Schema tag-attribute validation

In addition to the aforementioned features, IDEA also incorporates a XML error high-lighting function.
As shown in figure XML 1.3, if an error occurs in the XML code, IDEA will color-code the errors making
them easy to find and fix.

12 O <zl

z0 driver="%{crmieval.sql.driver}"

21 url="5{crmdeval . sgl.url}"

22 userid=" S{CI'Irrle:lral . %11 Luserid}"

23 password="{ Cannot resclve property ‘crmdeval, sql userid', |

24 <transaction src="5{crmdeval.=gl}fcrmieval .sql" />

25 <transaction src="5{crmdeval .sql}finit. sgql" />

26 @ < Syl XML 13
EJB Development

For those developers who are looking for a set of tools to aid you in much more complicated, robust, and
over all time consuming enterprise centered development projects — or — in other words, you need to crank
out a plethora of EJBs under a deadline or simply want to create EJBs that are flexible, scalable, and that
work quickly, then IDEA’s EJB support is just what the doctor ordered.

For starters, IDEA’s EJB wizard helps you create new beans to get you up and going quickly as shown in
figure EJB 1.1.

37



{@)create New EJB x|

e:ejb—game>:|MyEntity EJB ” Prefix and suffix are taken from JZEE Mames |

Package:

|mypackage ” |

EJE Class:

VZ}'DEA |mypackage.MyEntityBean ” |
rRemate Interface

[_] Enable Remote Interface

Harne Interface:

|mypackage.MyEntityH0me |
Component Interface:
|mypackage.MyEntity |

rLocal Inkerface

[¥] Enable Local Interface

Horne Interface:

|mypackage LocalkyErtityHorme || |

Component Interface:

|mypackage.LocaIMvEntity || |

| < Previous | | Mexk = I | Finish | | Cancel | | Help |

EJB 1.1

Once your bean has been created, IDEA will also monitor your EJB code with its integrated error high-
lighting function. Red is the magic color: major errors that prevent the deployment of your EJB will be
shown in red, including compatibility errors and errors in any of the deployment descriptors.

149 ;‘l String Mmﬂlﬁtring cardiumnber, 3tring cardType,

20 . [ Method 'ejbicreate’ should be public [} throws CreateException {

21 setCardiunber [cardNunber) ;

22 setlCardType (cardType) ;

23 setExpiryDate (expiryDate) ;

24 return null:

25 EI ' EJB1.2

IDEA’s advanced refactoring support also works during EJB development as shown in figure EJB 1.3.

o T S enesseniee [
= B Th 9 W

ATTEr mmmﬂ%mﬁm
| Packages | ﬁj. JZEE | setModificationDate (new Date (new java.util.Date().getTime|)));
7 Project | 9 H

¢ 12EE Application Madules ,§| O e+

Method get¥alueObject() of class CYhodeBean

) implements method of interface com. tophunt.ejb.interfaces. CYMode. e data within this
U5 Candidats Do you want ko rename the method From interface?

5 CandidateFile

=+ @5 ChangeRequest | o | | Cancel
# & ChangeRed T
4 . & ChangeRed 'iﬂ' @ public com. tophunt. ejb. interfaces. CVNodeValue (st NRbin)gi—edn (] |
% ChangeReq com, tophunt. ejb.interfaces, CVNodeYalue 1Data = new coh. tophunt. ejb,

% & ChangeRed

1Data.setNodeID (getlodeID) ) ;
@' & ChangeRed

] 1Data. setMane (getNane() ) ;
{% action:String = 1Data.setParentIDgetParentIDi) ) :

EJB 1.3

38



Collaboration Tools

If you have read through the Overview up to this point, it is probably safe for us to assume that you are
now pretty familiar with IDEA and have a grasp of the firepower it packs with its multitude of powerful
features and functions that, among a gazillion other things, hasten development, clean up your code, and
increase productivity. However, one should never expect IDEA to rest on its laurels, because being
content is about the last thing the makers of IDEA have on their minds.

IDEA has evolved into the kind of IDE that simply cannot avoid incorporating a good thing, and therefore,
IDEA has been forged to integrate seamlessly with some of today’s most popular and most important open
source development tools the industry has come to depend on.

This section will briefly cover these various tools and point you in the right direction to where you can
download them.

CVS Integration

IDEA not only helps you develop and design code faster and more intelligently -- it also helps you
manage and organize your projects for greater work efficiency. IDEA comes standard with a powerful
CVS (Concurrent Version System) to help you manage revisions to any project’s source code files. As
shown in figure CVS 1.1, IDEA’s CVS control panel is very user friendly. The administration console
allows you to set various criteria related to CVS operation.

@?Proiect Settings [15Ps] - Yersion Control

Project IDE
— Yersion control: |CVS v|
| B
f»{;v} Paths Command Dialogs
0 ) Display options dialog when these commands are invoked:
ﬁa Compiler
= [ Add v Edit [l Update
gg ‘ersion Cantral [Vl Remove [Vl Checkout [v] Commit
{1} code stye Files Creation/Deletion
When files are created with IDEA: When files are deleted with IDEA:
@ GUI Designer
@ Show options hefore adding to CVS @) Show options before remaving from CVE
2 Add to ©VS silently ) Remove from CYS silently
2 Do not add to CVS 3 Do not remaove fram CWS
COther Settings

[ Use read-only flag for not edited files  Default keyword substitution fortext files | expansion -

[C] Show CWE server autput
Commit comment:
[Vl Reuse lastcomment
[ Putfocus into comment

[C] Force non-empty comment

crvs 1.1
CVS preference administration console

Once your CVS preferences have been set, you are now ready to use the CVS tool itself. Under File on
the main menu, you can see three CVS menu items as shown in figure CVS 1.2.

39



Check Cut from CVS...
Import into CWYS...

Erowse CVWS Repository...

CcrVs1.2

During initial set up, you may select any of the 3 menu items to invoke the configuration panel as shown
in CVS 1.3. Once shown, you should configure the panel according to your personal set up and then select
the Test Configuration button to test and confirm the connection to the CVS system.

§3
HE D
K pseneriordsummerilse@evs.intintellinet.. | oy pgor |:pser\rer:lordsummenlse@cvsint.mtellijnet:IhumeIc\fE|| Editoy Field... |
Usge varsion
) HEAD revision
O Bytag 1)
) By date (-0)
Password file: |$userdirram0rratii.cvspass " |
Connection timeout: |E0000 seconds

CVS 1.3

If the connection test is successful, select OK to close the configuration panel. You may now connect to
the CVS by again selecting OK on the CVS Root Configuration pane. Once you are successfully
connected, you will see the directory hierarchy of your CVS folders as shown in figure CVS 1.4.

CV5 - Browse CV5 Repository

b4

@

-1

J2EE

0

7 Refactoring

[Z Move.doc

Collaboration Tools
Editor Features

JZEE Features

2l Change Method Signature.doc
[#] Encapsulate Field.dot

[#] Extract Interface.doc

[#] Extract Method.doc

[ Inline Method doc

[# Introduce Yariable.dot

l Browse CWS Repositony

Crs 1.4

While browsing, you can right-click any file item in the hierarchy to read the comments associated with
the last version checked in, or you can check the file out directly. By following the previous other two

main menu items, Import into CVS and Check Out from CV'S, you will be presented with similar options
that are easy to understand and follow.

40



g indexjsp

C! T initiationClass
C! @ |otester

C! T listenerExample

CVS Integration 1.5

Any change made to source files that have been added to the CVS will be highlighted blue as shown in
figure CVS 1.5. When something has been changed, but not yet checked-in, you can compare versions
and be alerted to any changes that may have taken place by color coded highlights as shown in figure CVS
1.6.

Ed 2, JlibY ISPsh srchinitiationClass.java =10l x|
o~ % 4 lgnore whitespace: | Do notignore v
HEAD (Read-only) Current
- numberoftrainsperhour = 5; Z1 zZ1 numberoftrainsperhour = 5; =—
mumberofplanesperhour = 15; 22 & numberofplanssperhour = 15;
mmberofferriesperhour = 2; 23 23 nmberofferriesperhour = Z;
z4 Z4 =
JPanel pane = mew JPanel(); 25 &5 TPanel pane = mew JPanel(): =
JButton okButton = new JButton("O0K"); 26 26 JButton okButton = mew JButton('O0E");
JBurton cancelBurtton = mew JEutton('Cancel"): z7 z7 JEurton cancelEutton = mew JEucton('Cancel");
JButton ignoreButton = mew JButton('Igmore" ): 28 28 JButton immorebutton = mew JButton('Ignore" ): o
29 29
if (numberofferriesperhout >= numberofplanesperho 30 30 if (mumberofferriesperhour >= numberofplanesperh
| 4ysten. out.println({"We're a sea-sick nation.. » 3l 3l Gystem. out.println('We 're a land-locked natiol
} else 32 3z } else
— Systen. out.println(mmberoftrainsperhour) 33 &3 Systen. out.printinimmberofrrainsperhour) ; =
an =n =
1 difference | Daleted _ | Changed | Insered CVS 16

Jakarta Ant

Those of you who depend on Jakarta Ant will find seamless integration of this powerful build tool into
IntelliJ IDEA. To utilize Ant, open a project in IDEA and then open the Ant Build panel as shown in
figure Ant 1.1.

| initiationClass java j] SimpleJSP.jsp 2
w = F

1 <@ page lanquage="Jawva” %> Ig

2 (=)

3

3 <HTML> 3

ii)

4 <HERD> =

5 <TITLE:S3imple J3P Exanple< /TITLE: e

& < /HERD>> —

7 <BODY: F

5 z

9 <P m

=

10 =

11 <% int nunTimes = Integer.parselnt(request.getParaneter ("numtimes")) d
12 for (int i = 0; 1 < numTimnes): i++) |

Ant 1.1

Select the Ant Build panel which is by default set on the right side of the IDE editor pane vertically

As shown in figure Ant 1.2, once the Ant Build panel has been open, simply select the + menu button and
add the build file you want to initiate your build process.

41



Ant Build

lepuewIWOgD T )

x|

Select Ant build file
Select one ar mare build xml files to be added ta the list

@ 0 |§_| Fd|
6E1
BEG
Blues
IDEA 3D
IDEA 31
jakarta-serdetapi-3.2.4
jakara-tomeat-3.2.4
Java Doc
jdk1.3.1_01
Jikes
- J5Ps

Builds

|

B EEEHEEH
| »
plNg Uy ok

[N E et

Projects

[+ Fefartarinn

0]34 | ‘ Cancel

Ant 1.2

Selecting the desired Ant build file

As shown in figure Ant 1.3, once you have selected your build file (see figure Ant 1.2), a navigation
window will appear outlining the build file’s sequence of events that will initiate during the build process.
To initiate the build process, just select the run menu item. Ant will begin its build process, and if any
errors occur, IDEA’s event window will display a detailed log of the final build results.

Ant Build
W EH T =E
= ProJsP

4 init

4 prepare

4 clean

= |E

dh javados
4 all
4 dist

Ant 1.3

View of selected build file’s contents

As shown previously in prior sections, IDEA’s standard tree-navigation window shows you the error
messages in its output if any errors are thrown. In figure Ant 1.4, you can see these error messages and
quickly navigate to their respective locations in the source code, make corrections, and restart the build
process again.

42



= B @12, 17 CulibJSPs\sreibuild xml12: Unexpected attribute "init"
I Ant build completed with 1 error at 4:51:49 PW in 12

|& v« [o] g%

@ ¢ » XN

Ll
| ant Build ProJspy |

Ant 1.4

JUnit

Those who like to do things right the first time, will no doubt appreciate JUnit’s integration into IDEA.
JUnit is an open source testing framework for Java that provides users with a simple but powerful way to
express a written code’s intention and then verify that code’s behavior according to its associated
intention. This is done by initiating unit tests (each test is normally associated with a specific class), and
then testing the output of each unit.

This is done to ensure that all of your objects are doing what they are supposed to be doing. When each
object does what it is supposed to be doing, then you won’t have to waste time later debugging. Itis a
pretty straight forward philosophy.

It is for this highly practical (and rather obvious) reason that IDEA has integrated JUnit. IDEA has an

easy to setup and configure JUnit control panel that helps you quickly run unit tests directly from IDEA.
You just simply invoke a test case method near your intended target object and the results of the test will
be visible in an output pane. As shown in figure JUnit 1.1, the results in the output pane are easy to read

and interpret. The output pane also allows you to quickly navigate to troubled areas and make immediate
corrections in your source.

Run - com | Y |-
M| @ | = ¥ | + 9 |g b= Done:Sof§ Faled:1 (0,0945) [ ]
1@ zom; | =1 output | T2 Statistics |

B (@) TestStrings (com,company. systen)
= )
(= testPrep

|

Junit. framework. ConparisonFailure: =Click to see difforences

o (@) testhumber l:jf!}assertEquals(String, String) failed b | =D ia
3 (=) bestString -
El &% TestMain (com.company . system’) o A | Ignore whitespace: | Do not ignore v

@ (= testRun Expected (Read-only) Actual (Read-only)

() kestConnect -1 1 1 1 -

—
(=) testal 2 2 2 555
(=% testServer 3 3 3 3
- - -
(of) testhccess
1 difference Deleted Changed Inserted -
b )
JUnit 1.1

43



Jikes

If you require a Java compiler with a little more juice and packs the compilation speed of a super-sonic jet,
then Jikes is the complier you need to use.

Jikes™ is a compiler that translates Java™ source files as defined in The Java Language
Specification into the bytecoded instruction set and binary format defined in The Java Virtual
Machine Specification.

This open source IBM production is noted not just for its speed, but also because it has the uncanny ability
to offer alternative selections to misspelled identifiers and it is equipped with an incremental compiling
feature along with an automatic makefile generation function. This is a jet that comes fully-armed!

If you want to test drive Jikes through IDEA, you won’t find setting it up a problem. Simply download
and install Jikes, change the Compiler properties to you liking, and set Jikes as your active compiler and
point to its path. As shown in figure Jikes 1.1, the control console is pretty straight forward.

Use compiler: (0 Jawvac () Jikes
Jikes Options
Path ko Jikes executable: |C:'|,jikes-1 Abinjikes, exe ||‘i

[¥] Eenerate debuaging info
[_] Generate no warnings

[w] Repaort use of deprecated Features

Additional Jikes command line parameters; | |

(o] || Cancel H Apply || Help |

Jikes 1.1

Select Jikes radio button and point to Jikes path to set up

Visual SourceSafe

When multiple people form a work group with specific goals in mind, regardless of the endeavor, their
success nearly always depends on their ability to communicate and work together in a concerted and
effective effort to achieve those common goals. When this scenario is applied to the development world,
we see that projects are completed timely and efficiently when project managers, developers, and other
essential parts of these groups are well informed of each other’s progress.

This is why IDEA was developed to be easily integrated with Microsoft’s Visual SourceSafe, an industry
leading document management and versioning control system application.

As shown in figure Visual SourceSafe 1.1, IDEA incorporates an easy to use and set up SourceSafe

control panel allowing you to quickly set up and begin to utilize your SourceSafe installation within
minutes.

44



I:I_i'aproiect Properties - ¥ersion Control ﬂ
&H Version control: | SourceSafe hd
0_ General | Advanced |
Caompiler
Paih to Y58 client (53 exs): | ]
FPath to W55 configuration file (srcsafe.ini): | || |
User name: | |
{[:-E]} Password: | |
Code Style Waorking Directarie
W55 Project | Wiorking Directory | Add.
(W Edt..
el | Remove
il
App Sener
Integration i
Visual SourceSafe 1.1
StarTeam

Borland’s StarTeame is another handy application for sharing and managing development code and
project responsibilities, and like Visual SourceSafe, it easily integrates with IDEA for effective cross-
application collaboration. As with the previous figure Visual SourceSafe 1.1, simply select StarTeam
under the Version control: drop down. Here you will be instructed to copy the starteam-sdKk.jar file into
your IDEA distribution/lib folder. Once the starteam-sdk.jar has been copied over, you will be able to
configure your StarTeam setup as shown in figure StarTeam 1.1.

I:ﬁ}'lul'ersiun Control EI

Mersion contral: |5tarTeam i |

—SkarTeam Settings

SErVer: |starteam.jetbrains.cum | Idser; |superdavid |

Pork: |49201 | Password: |********************* |

Project: |Du:ucumentatiu:un || |

Wi |\.-'iewlets || |

Wiarking Path: |C:'|,Starteam| || |

Test Connection |

StarTeam 1.1

Resources

JUnit: http://www.junit.org

Jakarta Ant: http://jakarta.apache.org/ant/index.html

Jikes: http://oss.software.ibm.com/developerworks/opensource/jikes/

45


http://www.junit.org/
http://jakarta.apache.org/ant/index.html
http://oss.software.ibm.com/developerworks/opensource/jikes/

Visual SourceSafe: http://msdn.microsoft.com/ssafe/

CVS: http://www.cvshome.org

StarTeam: http://www.borland.com/starteam/

Open API

After getting acquainted with IDEA, you will quickly realize that it comes with a hefty selection of
development features and integrations that will more than satisfy the most “tool hungry” developers out
there. However, in case IDEA doesn’t have a feature you want or lacks integration with some obscure
tool, you have the opportunity to add such feature or integration yourself.

Third party developers will be happy to know that their application’s functions can be called directly from
IDEA. In addition, they can incorporate a number of IDEA’s features directly into their own applications.
From a developer’s perspective the Open API gives access to a whole new “eco-system” of development
tools that accommodate and enhance IDEA’s already industry setting capabilities.

IntelliJ IDEA Developer Community

Users interested in coding their own plug-ins for IDEA or extending some of IDEA’s functionality into

their own applications, are encouraged to check out the IntelliJ] Community website at: www.intellij.org
Here one can find among other things a large and growing list of plug-ins for IDEA, most of which are

free to the public for use and many times open source.

Automated Plugin Installation and Update Tool

In case IDEA does not come with a specific tool you desire, you are now aware that you can always code
your own plugin for IDEA, or alternatively download one of the many free tools available from the
IntelliJ Developer Community. If you wish to download additional tools, you can now do so with
IDEA’s built-in automated plugin installation and update tool. As shown in figure Plugins 1.1, just open
IDEA’s File | Setting | IDE Settings | Plugins tab, and see the plugin icon on the left menu.

46


http://msdn.microsoft.com/ssafe/
http://www.cvshome.org/
http://www.borland.com/starteam/
http://www.intellij.org/

@iplugins |
B8R R
| Installed (4} | Available (122) |
Name ) |Status | Inst... |Vers... | [Date | Size |D0w... | Cat... |
- o [ Lk : T e s
A 3ZME Flugin Mt in. .. nia N7 hir... Ok NR... 441894 &2 BZME | —
&k JarspyPlugin 22l Synchronize with Plugin Repositary CheHalE+HY | Misc
@k Java Signature Plugin EE, Update Installed Plugins Code ..,
L Javaboc Editor N e : Editor
Download and Install Plugin P
«E Jira Browser @ Team. ..
€k JritGeneratar = it
«k LineMover Matin... nfa 0.4b Feb 1... 9009 743 Editor
«k Log4iMonitor Matin... nfa 093 Febl.. 132042 2151 Misc
«k Macros Manager Matin... nfa 1.0 Qck 08.,, 240324 202 Misc -
Plugin home page:  {not specified)
Description: Integrates SUM Microsystemns WTK emulator into Intellid IDEA
Change notes:
Wendor IDEA Yersions
Marne: Pingoft Minimurn: 3.0
E-mail: (ot specified) Maximurn: 3.1
Home page:  {not specified)
HTTP Proxy Settings...
(0] 4 I | Cancel Help
Plugins 1.1

After the Available tab has been selected, a list of all the downloadable plugins for IDEA will appear.
Once the list has loaded, right-click on a specific plugin you want, and select either Download and Install
or Update Installed plugin.

Once the plugins you have installed have been downloaded, restart IDEA and they will then be
automatically deployed by IDEA and ready for use.

Free Community Plugins

Just to give you a taste of some of the real cool and useful plugins that members of the IntelliJ community
are developing, we would like to introduce 3 of the more widely used and popular plugins available
through IDEA’s automated plugin installer:

InspectionGadgets

The InspectionGadgets plug-in extends IDEA’s built-in code inspection and error reporting functionality
with over 270 new code inspections, creating a super powerful and productive code analysis environment.

Once InspectionGadgets has been installed, IDEA will automatically search through your code for
common errors, code weaknesses, and places for improvement. InspectionGadgets provides further
inspections in the following categories:

performance problems

confusing and error-prone code constructs
common bugs

design flaws

initialization problems

47



naming conventions

threading issues

internationalization problems

style issues

portability concerns

Common JUnit errors

class and method metrics (size, algorithmic complexity, coupling)
many more...

While InspectionGadgets is comparable with the best commercial and open-source static-analysis tools in
terms of number of inspections reported, its real value comes in the tight coupling of static analysis and
code editing. With InspectionGadgets and IDEA, errors can be shown during editing as “yellow-line”
warnings, with tool-tips describing each error for easy comprehension. Errors can be quickly navigated to
using “Find next error” (F2) function, so that they can be easily fixed. Even more impressive, fifty of the
inspections come with “quick fixes”, which let the user automatically fix the error with a keystroke. Add
it all up, and the pairing of IDEA and InspectionGadgets can’t be beat for either finding bugs or
preventing them.

@? Inspect Code in File C*, InspectionGadgets' src' com' siyeh’ ig'.confusing', ImplicitNumericC

Profile -

Mame: | Working Inspection

i | | Save fs... | |

Delete

rInspections

- Description -

[w] Unused declaration
[ [v] Declaration Redundancy
[v] Declaration access can be weaker
[w] Declaration can hawve stakic modifisr
[#] Declaration can have final modifier
[v] Urwsed method parameters
[#] Actual method parameter is the same constant
[#] Unused methiod return value
[v¥] Method returns the same value
[w] Empty methaod
[#] Redundant thraws clause
[_] Declaration has javadoc problems
[v] Deprecated 4PI usage
[#] equals(y and hashCade() ok paired
[C] EJB Errors & Warnings
= [¥] Local Code Analysis

[w] Constant conditions & exceptions

[#] Unused assignmert

[v¥] Redundant kype cast

[v] Local variable or parameter can be final
- [v] Abstraction issues

[#] Cast ko a concrete class

=

=

i

-

This inspection reports classes, methods or fields in the
specified inspection scope that are not used or not
reachable from entry points,

|C:'I,InspectionGadgets'l,Leftovers |

[lUse check boxes in the inspection options below, to
specify what should be automatically assumed entry
points, You will also have a possibility to add entry
points manually when inspection results are ready.

[w] Butomatically add all void main(String args[]) methods ko entey poinks
[v] Automatically add all EJ6 interface methods to entry points

[#] Butomatically add all JUrit beskcases to entry poirks

[w] Automatically add all applets bo entry poinks

[v] Aukomatically add all serviets to entry points

[w] Butomatically add classes that have usages in non-java files ko enke...

Over 270 additional inspections with InspectionGadgets

48



@;}InspectiDnGadgets.ipr - [C:\InspectionGadgets] - C:\InspectionGadgets',sec, com',siyeh’igh confusing ', ImplicitNur

File Edt 3Search Wew GoTo Code Refackor Build Run Tools Window ‘Workspaces Help

=18

=B if} f—; i % B iﬁ |)9 2 |<%'J ] |ﬂ§”"__;l Print Inspection List w | (B @

=

t e ‘& 'g'- = L] CIassWithUutNUArgCDnstr_uctUrInspect\Un.iavé I il EnumAshamelnspection.java i
= B Th A 2
] (i ClasswithoutConstructorInspection. java
| I Project | |- | Packages | .| ImplicithumericConversionInspection.java I i Object.java
E [~ InspectionGadgets = [i] ImplicitNumericConversionInspection.java
= | InspectionGadgets [\ InspeckionGadasts)

B

_i| TeardownlsPublic¥oidioArgInspection java:

classes = - et
T Li| TestMethodIsPublicvoidMoArgInspection.java
[
META-INF % Leftovers I | SetupIsPublicVoidMoArginspection, java
W i
[ G sre . [}
final String newExpression = convertExpression(m expression, expec
& [ com replaceExpressioniproject, m_expression, newExpression):
=+ [ siveh 1
- Eig else
a7 abstraction 1 =
57 bugs final 3tring newExpression:
Jeict) . if(ParenthesesUtils.getPrecendence (m_expression) <= ParenthesesUtil
+ (50 classlayou
{
i1 classmekrics newExpression = '{' + expectedType.getPresentableText() + '} ' +H_|
-
[*]

Inspection - Inspection Results
¥ = @ InspectionGadgets.ipr (44 tems)

Abstraction issues |
y
Class metrics (1 item
44
@
&
i
= i T OwerlyComplexdrithmeticExpressionInspection,m_limit (1 Fe;
(2
2 £ T OverlyComplexBooleanExpressionlnspection.m_limit |
v i T SwitchStatementwithTooFewsranchesInspection.m_limit

f' T SwitchstatementwithTooManyBranchesInspection.m_limit (1 ife:
Local Code Analysis 3

Method metrics (S i

InspectionGadgets’ easy to read and navigate inspection report

Intention Power-Pack

IDEA broke new ground in version 3.0 with “programming by intention”. With “programming by
intention”, many simple programming actions or “intentions” were made available to the developer based
on their current editing position. Clicking on the name of an abstract class, for instance, would bring up
the “light bulb” icon, presenting the programmer with the option to create a new sub-class of it. The
Intention Power-Pack plugin adds additional intentions to IntelliJ IDEA, automating a lot of common
programming tasks. Intentions are provided by Intention Power-Pack to perform the following:

Convert && to ||, and vice versa

Reorder and simplify boolean expressions

Convert “.equals()” expressions to “==", and vice versa

Replace switch statements with if statements, and vice versa

Convert ternary conditional expression (?:) to if-then-else statements, and vice versa
Translate integer literals between decimal, octal, and hexadecimal

Replace simple assignments with operator assignments

“Flip” boolean operations, numeric comparisons, and commutative method calls.

49



The following two figures show the replacement of && to || with Intention Power-Pack:

i| RemovelnnecessaryParenthesesIntention. java " g Announce, txk r
(| UnnecessaryParenthesesPredicate, java
i ManualTestClass.java u ] CommutativeMethodCallPredicate java
| SplitElseIfIntention. java ” 3¢ build,zml ” | plugin.zml
i MergelfandIntention.java || ] IntentionPowerPack.java
: v i
return false:
}
final PsiMethod[] methods = arqumentClass. findMethodsEyNane (nethodiang
fori{int i = 0; 1 < methods.length; i++)
{
final PziMethod testMethod = methods[i]:
final 5String testMethodNawme = testMethod. getName ()
if (cestMechodiNane. equal z (methodWNane) |
{
final PsiParameterlist parameterlist = testMethod.getParametey
final PsiElement[] parameters = parameterList.getChildren():
if (parameters. length == 1)
{
final PsiParameter parameter = (PsiParameter) parameters|
final PziType type = parameter.getTypel):
! : 1
o Replace &8 with || eturn true;
W Replace = with | .equalsf)
W Flip1=
W Megate I=to ==
& o Flip g
4| RemoveUnnecessaryParenthesesIntention. java “ g Announce. b=k I
i UnnecessaryParenthesesPredicate java
| ManualTestClass.java “ 4] CommutativeMethodCallPredicate.java
1| SplitElseIfIntention.java ” x| build, =l N x| plugin.=ml
J| Mergelfandintention. java ” | IntentionPowerPack.java
w Y
n
return false:
'
final PsiMethod[] methods = argqumentClaszss. findMethodsByNane (nethodNansg
for(int i = 0; i < methods.length; i++)
i
final PziMethod testMethod = methods[i];
fimnal String testMethodlame = testMethod.getName():
if (testMethodNane. equal 3 (methodilane) )
{
final PsiParameterlist parameterlList = testMethod.getParameter
final PsiElement[] parameters = parameterlist.getChildren():
if (parameters.length == 1}
{
final PsiParameter parameter = (PsiParameter) parameters[(
final PziType type = parameter.getType();
7 Rgl! (Cype == null || !type ahleFromi
return true;
}
}
}
'
return false:

50



Rearranger

The Rearranger plugin rearranges (reorders) class and class member declarations according to a user-
specified order and/or method call hierarchy. For example, take the following sample class in figure
Rearranger 1.1:

1 =

11 package cown.wWiq.Iearranger;

12

13 ) =%

14 # Illustrates redrrangement by the plugin.

15 @ #/

18 ahstract public class Rearrangele

17 i

18 ahstract bhoolean isGood():; /. matches rule 7, "abstract methods"™

13 = SEE

20 # fieldl is documented here. This documentation moves with the field.

21 @ *7

ZZ int fieldl; A matches rule 2, "non-static fields"

23 private woid method2(] {}/ called by "method()" —- should appear just below it
24 protected RearrangeMe (int fieldl)] /. maifches rule &, "constructor methods™
25 O

Z6 this.fieldl = fieldl:

G

23 public woid method() // metches rule §, "other metlhods"

29 O {

a0 wethodZi): /v calls another method

CIUNCTE

32 public static fimnal int CONSTANT = 1; /. matches rule 1, "static fields"
3 b Rearranger 1.1

To use Rearranger, just invoke its control panel and set specific rearrangement rules as shown in figure
Rearranger 1.2

i
[ Class Member Order | Quter Class Order || Extracted Methods || General || Spacing |
Seq | P | Rule [ | A
1 1 static fields
| 1 [non-static fields Edit
3| nfa |Comment {ff End of fields) when any of preceding 2 rules are matched
4| 1 finitializer methods -
5 1 |constructor methods Duplicate
6 1 [Methods implementing interfaces (interfaces alphabetized)
7| 1 |abstract methods Remove
8 1 |other methods o :
a 2 |getterisetter methods L uw |
10; 1 |allinner classes
11| 2 Estatic methods Move down
Rearranger 1.2

The plugin can optionally display the proposed rearrangement in a popup similar to File Structure (Ctrl-
F12), but showing the items matching each rule, and showing the method hierarchy as shown in figure
Rearranger 1.3

51



Rearrangement Results il

= RearrangeMe. java
= public dlasses
[F 'C' FearrangefMe
[=} stakic Fizlds
o CONSTAMT: ink=1
[=} nion-shatic Fislds
f o Fieldl:int
inibialirer methods
= construckor metheds
m' RearrangeMelint Figld1)
Methods implementing inkerfaces finterfaces slphabetized)
= akstract metheds
m jsood(): boolean
= cther metheds
=} b methiod(: void
m’ methodz(): woid

getherjgstrer methods
Al inrer dasses

skakic methods
cdefault rule =

[¥] show parameter types  [w] Show parameter names  [w] Show fields  [w] Show rules

Zancel

Rearranger 1.3

In this example case, the Rearranger was configured to move called methods below their callers; this is
why method2() appears just below method ().

Once the rearrangement process has been initiated, the resulting source will appear as shown in figure
Rearranger 1.4.

b = i
12
13 Q=
14 # Tllustrates redrrangement by the plugin.
15 & =~
156 abstract public class RearrangeMe
17 {
15 public static final int CONSTANT = 1; /. matches rule 1, "static fields™
19 Iz FEE
z0 *# Fieldl is documented kere. This documentation moves with the field.
21 A w7
ZZ int fieldl: /7 matches rule 2, "non-static fields"™
23 & End of fields
24 protected RearrangeMe (int fieldl) 7 maetches rule 5, "constructor methods™
28 O o
26 this.fieldl = fieldl:
27 O }
28
29 ahstract hoolean isGood(): /7 maiches rule 7, "abstract methods™
30
31 public woid nethod{) /7 maiches rule 7, "obther methods™
32 5] {
33 methodZ () /° calls another method
MO )
35
36 private void method2() {17 called by "method()" —— should appedr just below it
37 i

Rearranger 1.4

52



The Rearranger is also able to generate comments conditionally (see rule 3 and line 23), and will remove
old comments before rearranging so that generated comments aren’t duplicated.

To get more information about the above three community plugins, please see www.intellij.org for more,
in-depth descriptions of each plugin and their related features and functions.

Conclusion

After reading through this Overview, you should have a clear conception of the main features and
functions IDEA 4.0 comes equipped with. What you cannot garner from reading this Overview, however,
is a better understanding of how it actually feels to use IDEA; what cannot be written on paper or in
electronic form will certainly be assuaged by actually using IDEA. Many other IDEA features which we
did not cover in this Overview were not covered because there is no way to manually invoke them, they
are autonomic, and like the beat of a heart, they just work as you code. It is therefore imperative, that
once one has read the Overview to get an idea, they follow up by trying IDEA to also get the feeling. To
have this complete experience, there is only one thing left to do, and that is to download a free evaluation
of IDEA and to try it. After all, what do you have to loose besides your old IDE?

Download: http://www.jetbrains.com/idea/download/index.html

- Finis -

53


http://www.intellij.org/
http://www.jetbrains.com/idea/download/index.html

	IntelliJ 4.0 Overview
	Contact
	International Sales
	North American Sales
	Sales Offices
	East coast
	West coast
	Canada




	On the Web
	Acknowledgements
	About IntelliJ IDEA
	Why Read This Overview?
	IntelliJ IDEA:  The Intelligent, Usable Java Editor
	New Features in IntelliJ IDEA 4.0
	GUI Designer
	Generics Support
	Modular Project Creation
	BEA WebLogic Integration
	HotSwap Debugger
	Split Editor

	Code Completions
	Basic (Ctrl + Space)
	Smart-Type (Ctrl + Shift + Space)
	Class Name (Ctrl + Alt + Space)

	Import Assistant
	Live Templates
	Searching for Usages
	Code Layout Manager
	Optimize Imports
	Intention Actions
	Opening Class by its Short Name
	Keymapping
	Navigation
	Code Inspection
	Refactoring
	What is Refactoring?
	Renaming
	Move
	Introduce Variable
	Extract Interface / Superclass
	Extract Method
	Inline Method
	Encapsulate Field
	Change Method Signature

	J2EE Support
	Web Application Development
	XML Development
	EJB Development

	Collaboration Tools
	CVS Integration
	Jakarta Ant
	JUnit
	Jikes
	Visual SourceSafe
	StarTeam
	Resources

	Open API
	IntelliJ IDEA Developer Community

	Automated Plugin Installation and Update Tool
	Free Community Plugins
	InspectionGadgets
	Intention Power-Pack
	Rearranger


	Conclusion

